Navigation Links
Genetic 'roadmap' charts links between drugs and human disease

A research team led by scientists at the Broad Institute of MIT and Harvard announced today the development of a new kind of genetic "roadmap" that can connect human diseases with potential drugs to treat them, as well as predict how new drugs work in human cells. Called the "Connectivity Map," the new tool and its uses are described in the September 29 issue of Science and in separate publications in the September 28 immediate early edition of Cancer Cell. The three papers show the map's ability to accurately predict the molecular actions of novel therapeutic compounds and to suggest ways that existing drugs can be newly applied to treat diseases such as cancer. Based on the results, the papers propose a public project to expand this initial human Connectivity Map -- in the spirit of the Human Genome Project -- to accelerate the search for new drugs to treat disease.

"The Connectivity Map works much like a Google search to discover connections among drugs and diseases," said senior author Todd Golub, the director of the Broad Institute's Cancer program, an investigator at the Dana-Farber Cancer Institute, an associate professor of pediatrics at Harvard Medical School, and an investigator at the Howard Hughes Medical Institute. "These connections are notoriously difficult to find in part because drugs and diseases are characterized in completely different scientific languages."

A key challenge in biomedicine is to connect each human disease with drugs that effectively treat it and to understand the molecular basis for such drugs' effects. To solve this problem systematically, the scientists described the effects of drugs and diseases in the common language of "genomic signatures," meaning the full complement of genes that the drugs turn on and off.

To create a first-generation Connectivity Map, the scientists measured the genomic signatures of more than 160 drugs and other biologically active compounds. They next developed a computer progr am to compare the signatures of the drugs with each other and also with the signatures seen in diseases. Using the Connectivity Map, the scientists were able to discover the mechanisms underlying a novel drug candidate for prostate cancer, and that a drug currently used to treat one disease may be useful in another.

"This is a powerful discovery tool for the scientific community," said Justin Lamb, the lead author of the Science paper and a senior scientist in the Broad Institute's Cancer program. "By analyzing just a small fraction of available drugs, we have already confirmed several biological connections between drugs and human disease, and made entirely new ones, too."

Like other scientific databases, the true value of the Connectivity Map lies in its capacity to be queried by nearly any researcher with a computer. The genomic signature of a particular human disease, drug or other biological response of interest serves as the search "word" and potential functional connections are revealed through a rank-ordered list of reference compounds in the database that have matching signatures.

One of the surprising results to emerge from the Connectivity Map involves gedunin, a plant derivative that, despite a long history of medicinal use, is not well understood molecularly. The researchers identified gedunin in a high-throughput chemical screen for molecules that disrupt hormone signals in prostate cancer cells and then used the Connectivity Map to help uncover its precise molecular action. As confirmed through additional work, gedunin disrupts a key quality control mechanism in the cell.

Another key finding suggests a new way to overcome drug resistance in cancer. Using the Connectivity Map, a scientific team led by Scott Armstrong, an assistant professor at Harvard Medical School and Children's Hospital Boston and an investigator at the Dana-Farber Cancer Institute, identified the FDA-approved immunosuppressant drug, sirolimus (al so known as "rapamycin"), as a therapeutic candidate for overcoming drug resistance in a form of human leukemia. These findings, as well as those for gedunin, are described in Science and in separate Cancer Cell publications.

"Although this first version of the Connectivity Map is limited mainly to drugs, the same concepts could be applied universally across all facets of human biology." said Eric Lander, an author of the Science paper and the director of the Broad Institute. "Expanding this initial map to encompass all aspects of human biology would provide a valuable public resource for the scientific community. Such an effort would parallel the sequencing of the human genome, both in its scope and in its potential to accelerate the pace of biomedical research."

Source:Broad Institute of MIT and Harvard

Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Genetically modified natural killer immune cells attack, kill leukemia cells
3. Ants Genetic Engineering Leads To Species Interdependency
4. Genetic Variation Visualization - From EMBL
5. Genetically modified rice in China benefits farmers health, study finds
6. Infants With Rare Genetic Disease Saved by Cord Blood Stem Cells
7. Genetically Modified Natural Killer Immune Cells Attack, Kill Leukemia Cells
8. Genetic defects give the immune system the green light to attack the pancreas
9. Maine Researchers Find Exceptions to Old Rules of Genetic Inheritance
10. Genetic therapy reverses nervous system damage in animal model of inherited human disease
11. Infants with Rare Genetic Disease Saved By Cord Blood Stem Cells

Post Your Comments:

(Date:11/20/2015)... 20, 2015 NXTD ) ("NXT-ID" ... the growing mobile commerce market and creator of the ... , was recently interviewed on The RedChip Money ... this weekend on Bloomberg Europe , Bloomberg Asia, ... --> NXTD ) ("NXT-ID" or the "Company"), a ...
(Date:11/19/2015)... Calif. , Nov. 19, 2015  Based on ... Frost & Sullivan recognizes BIO-key with the 2015 Global ... Each year, Frost & Sullivan presents this award to ... line catering to the needs of the market it ... product line meets and expands on customer base demands, ...
(Date:11/19/2015)... -- Although some 350 companies are actively involved in molecular ... according to Kalorama Information. These include Roche Diagnostics, Hologic, Abbott ... of the 6.1 billion-dollar molecular testing market, according to ... Diagnostic s .    ... one company and only a handful of companies can ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... --> ... 2020 report analyzes that automating biobanking workflow will ... long-term samples, minimizing manual errors, improving the workflow ... errors such as mislabeling or inaccurate sample barcoding ... a vital role in blood fractionation, DNA extraction, ...
(Date:11/25/2015)... 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) announced ... stockholder rights plan (Rights Plan) in an effort to ... (NOLs) under Section 382 of the Internal Revenue Code ... PharmAthene,s use of its NOLs could be substantially limited ... in Section 382 of the Code. In general, an ...
(Date:11/25/2015)... 2 nouvelles études permettent d , ... les souches bactériennes retrouvées dans la plaque dentaire ... . Ces recherches  ouvrent une nouvelle voie ... de l,un des problèmes de santé les plus ... --> 2 nouvelles études permettent d , ...
(Date:11/25/2015)... Studies reveal the differences in species of bacteria ... for more effective treatment for one of the most commonly ... --> --> Gum disease is one ... relatively little was understood about the bacteria associated with it ... researchers from the WALTHAM Centre for Pet Nutrition together with ...
Breaking Biology Technology: