Navigation Links
Gene therapy advance treats hemophilia in mouse models

Vector improved in two ways creates a sustained, partial correction to bleeding problems in mice

A virus that typically infects insects could help with the development of gene therapy treatment for Hemophilia A, a condition in which even a bump on the knee can cause serious internal bleeding in people.

Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine improved a vector -- a vehicle that delivers gene therapy to cells -- in two ways to create a sustained, partial correction to bleeding problems in mice engineered to have Hemophilia A, which is also known as factor VIII deficiency. The findings appear in the Sept. 1 issue of the journal Blood (published Aug. 19 online).

The team adapted the outer layer, or "coat," from a baculovirus, a virus that infects butterflies and moths, onto another modified virus. This hybrid vehicle could more easily attach to certain liver cells and allow the genes within the vehicle to enter the cells. The genes then caused the liver cells to make the protein that prevents bleeding.

The researchers also modified the vehicle so that it would express these therapeutic genes only in liver cells, thus reducing the likelihood of negative side effects.

The laboratory findings have significant potential for developing improved treatment for hemophilia but are not yet applicable to people, cautioned Paul McCray, UI professor of pediatrics and the study's corresponding author. "It's an exciting finding, but we are still many steps away from a possible gene therapy for people with hemophilia," he said.

Hemophilia A is the leading sex-linked bleeding disorder, affecting one in 5,000 to 10,000 males. People with the condition have a genetic mutation that leaves them with little to no factor VIII protein to prevent uncontrolled bleeding. Individuals with the severe form of the disease have less than 1 percent of the normal amount of protein. However, only a rela tively small amount of the normal protein level is needed to make the problem milder and, thus, less life threatening.

"Hemophilia is considered an ideal candidate for correction with gene therapy because if you could just raise the factor VIII activity from less than 1 percent of normal to within 5 to 10 percent of normal, the tendency for spontaneous bleeding and need for hospitalization would diminish dramatically," McCray said.

"In the mouse model in our study, we were able to achieve levels of gene expression that converted the hemophilia A in the mouse from a severe to a mild form. The correction lasted 30 weeks -- the duration of the study," he added.

One of the current treatments for hemophilia involves intravenously delivering recombinant (genetically engineered) human factor VIII protein to prevent bleeding episodes. However, the weekly to bi-weekly preventive treatments are extremely expensive, costing up to $500,000 per year. In addition, over time some patients may develop antibodies to the protein, making the treatments less effective.

In earlier studies, McCray's team, which includes Yubin Kang, M.D., at the time a UI assistant research scientist in pediatrics (now a UI resident in internal medicine), targeted the liver because its main functional cells, called hepatocytes, can make the factor VIII protein and secrete it into the bloodstream. However, the investigators recognized the need to target the liver more effectively.

"It has been difficult to conclusively identify the cells that normally make factor VIII," McCray said. "Hepatocytes may not be the main source of this protein, but they are relatively easy to target. So we aimed to find a way to get these cells to make more of it. In effect, we're using the hepatocytes as a factory to make this protein and secrete it into the bloodstream."

To better target the hepatocytes in the mice, the team took the disabled protein coat from the baculovirus A utographa californica and put it on to a modified type of lentivirus called feline immunodeficiency virus (FIV). FIV causes leukemia in cats but no disease in humans.

The hybrid vehicle efficiently bound to receptors on the liver cells because the modified baculovirus coat serves as a "key" that fits into the "lock," or receptor. The percentage of liver cells that took up the virus increased from approximately 5 percent to 20 percent.

The team also modified the part of the FIV that expresses the therapeutic gene so that its promoter that causes gene expression worked only when it was in a liver cell.

"Even if this FIV modified virus goes to other organs of the body, it won't express well because its promoter is liver-specific," McCray said. "This modification helps prevent negative side effects. For example, if the gene were expressed in immune cells instead of liver cells, it could lead to a damaging immune response."

McCray said the team now is studying additional ways to make the hybrid vector express the protein even better.


Source:University of Iowa

Related biology news :

1. Adding Radiation Therapy To Chemotherapy Improves Survival In Patients With High-risk Breast Cancer
2. Columbia research lifts major hurdle to gene therapy for cancer
3. Combination therapy boosts effectiveness of telomere-directed cancer cell death
4. Gene therapy converts dead bone graft to new, living tissue
5. Study identifies predictors of HIV drug resistance in patients beginning triple therapy
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Muscle-targeted gene therapy reverses rare muscular dystrophy in mice
8. New therapy for HIV/AIDS eliminates needles and excessive toxicity
9. New Treatment Rivals Chemotherapy For Lymphoma, Study Finds
10. Gene therapy for Parkinsons disease moves forward in animals
11. Pulsating ultrasound enhances gene therapy for tumors
Post Your Comments:

(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
(Date:10/29/2015)...  The J. Craig Venter Institute (JCVI) policy group ... Biosecurity: Lessons Learned and Options for the Future," which ... Services guidance for synthetic biology providers has worked since ... --> --> Synthetic biology promises great ... pose unique biosecurity threats. It now is easier than ...
(Date:10/29/2015)... OXFORD, Connecticut , October 29, 2015 /PRNewswire/ ... "Company"), a biometric authentication company focused on the ... Wocket® smart wallet announces that StackCommerce, a leading ... will be featuring the Wocket® smart wallet on ... NXTD ) ("NXT-ID" or the "Company"), a ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... ... November 30, 2015 , ... ... with MarkLogic, the Enterprise NoSQL database platform provider, creating a seamless approach ... Smartlogic’s Content Intelligence capabilities provide a robust set of semantic tools which ...
(Date:11/27/2015)... ... November 27, 2015 , ... ... that includes over 2,000 technical presentations offered in symposia, oral sessions, workshops, awards, ... spectroscopy, covers a wide range of applications such as, but not limited to, ...
(Date:11/25/2015)... 2015 --> ... - 2020 report analyzes that automating biobanking workflow ... in long-term samples, minimizing manual errors, improving the ... manual errors such as mislabeling or inaccurate sample ... plays a vital role in blood fractionation, DNA ...
(Date:11/25/2015)... and HOLLISTON, Mass. , ... Inc. (Nasdaq: HART ), a biotechnology company developing ... CEO Jim McGorry will present at the ... 1, 2015 at 2:30 p.m. PT. The presentation will ... for 30 days. Management will also be available at ...
Breaking Biology Technology: