Navigation Links
Gene Expression in the Aging Brain

No matter how healthy a life one leads, no person has managed to live much longer than a century. Even though the advances of the modern age may have extended the average human life span, it is clear there are genetic limits to longevity. One prominent theory of aging lays the blame on the accumulation of damage done to DNA and proteins by “free radicals,?highly reactive molecules produced by the metabolic activity of mitochondria.

This damage is expected to reduce gene expression by damaging the DNA in which genes are encoded, and so the theory predicts that the most metabolically active tissues should show the greatest age-related reduction in gene expression. In this issue, Michael Eisen and colleagues show that the human brain follows this pattern. A similar pattern—which, surprisingly, involves different genes—is found in the brain of the aging chimpanzee.

The authors compared results from three separate studies of age-related gene expression, each done on the same type of DNA microarray and each comparing brain regions in young versus old adult humans. In four different regions of the cortex (the brain region responsible for higher functions such as thinking), they found a similar pattern of age-related change, characterized by changes in expression of hundreds of genes. In contrast, expression in one non-cortical region, the cerebellum (whose principal functions include movement), was largely unchanged with age. In addition to confirming a prediction of the free-radical theory of aging (namely, that the more metabolically active cortex should have a greater reduction in gene activity), this is the first demonstration that age-related gene expression patterns can differ in different cells of a single organism.

The authors found a similar difference in age-related patterns in the brain of the chimpanzee, with many genes down-regulated in the cortex that remained unchanged in the cerebellum. However, the set of affected cortical genes was entirely different between humans and chimps, whose lineages diverged about 5 million years ago. The explanation for this difference is unknown, but the finding highlights the fact that significant changes in gene expression patterns, and thus changes in many effects of the aging process, can accumulate over relatively short stretches of evolutionary time.

These results raise a number of questions about age-related gene expression changes, including whether metabolically active non-brain tissues display similar patterns of changes, and whether the divergence between human and chimp patterns was the direct result of selection, or was an inevitable consequence of some other difference in brain evolution. The patterns seen in this study also provide a starting point for understanding the network of genetic changes in aging, and may even reveal targets for treatment of neurodegenerative diseases.


'"/>

Source:PLoS Biology


Related biology news :

1. Study Demonstrates Gene Expression Microarrays are Comparable and Reproducible
2. Iron Deficiency Sparks Dramatic Changes In Gene Expression
3. Applied Biosystems Introduces Advanced Gene Expression Service Provider Program
4. Expression Project for Oncology (expO) completes first phase of standardized gene expression analyses
5. Research on Worms Yields Clues on Aging
6. Cellular Defects in Premature Aging Disease are Reversible
7. Young Blood Revives Aging Muscles, Stanford Researchers Find
8. Aging cells, aging body: Fresh evidence for a connection
9. Tramiprosate (Alzhemed? preclinical results published in Neurobiology of Aging
10. Its never too late to get it back! Aging interrupted
11. Transport System Smuggles Medicines Into Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/22/2017)... , March 21, 2017 Vigilant ... company serving law enforcement agencies, announced today the appointment ... as director of public safety business development. ... law enforcement experience, including a focus on the aviation ... his most recent position, Mr. Sheridan served as the ...
(Date:3/16/2017)... 2017 CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made ... ... Used combined in one project, multi-biometric solutions provide a crucial contribution against identity ... Used combined in one project, multi-biometric ... ...
(Date:3/9/2017)... and MOUNTAIN VIEW, Calif. ... "Eating Well Made Simple," and 23andMe , the ... guide better food choices.  Zipongo can now provide customers ... food preferences, health goals and biometrics, but also genetic ... food choices. Zipongo,s personalized food decision support ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... ... April 18, 2017 , ... Optofluidics today announced that it's ... the company changed focus to making analytical tools for biopharmaceutical quality control. “We ... says CEO Robert Hart. Founders Bernardo Cordovez, Robert Hart and David Erickson have ...
(Date:4/19/2017)... ... April 19, 2017 , ... As part of the ... to novices as well as experienced users, attendees will gain a better understanding ... tests. , Hemostasis testing quality is determined by preanalytical variables which encompass ...
(Date:4/19/2017)... April 19, 2017 Veracyte, Inc. ... that it will report its first quarter 2017 ... 3, 2017. Following the announcement, Veracyte,s management will host a ... Time to discuss the company,s financial results and business ... replay may be accessed by visiting Veracyte,s website at  http://investor.veracyte.com ...
(Date:4/18/2017)... Texas (PRWEB) , ... April 18, 2017 , ... For ... Research Associates, co-members in the VaxCorps vaccine consortium, were named one of the top ... finalist since the inception of this category; winning the award four times previously, and ...
Breaking Biology Technology: