Navigation Links
Free radical cell death switch identified

"A common molecular denominator in aging and many age-related diseases is oxidative stress," says the study's lead author Azad Bonni, MD, PhD, HMS associate professor of pathology. The skin of a bitten apple will brown because of its exposure to air, and in some ways that is a good metaphor for the damage that oxidative stress is causing to neurons and other types of cells over time.

Humans and other organisms depend on oxygen to produce the energy required for cells to carry out their normal functions. A cell's engine, the mitochondria, converts oxygen into energy. But this process also leaves a kind of exhaust product known as free radicals. When free radicals are not destroyed by antioxidants, they create oxidative stress. As the body ages, it produces more and more free radicals and its own antioxidants are unable to fight this process, which results in the generation of highly reactive oxygen molecules that inflict cellular damage by reacting with biomolecules including DNA, proteins, and lipids. A lifetime of oxidative stress leads to general cellular deterioration associated with aging and degenerative diseases.

How the oxidative-stress signals trigger these profound effects in cells has remained unclear. But Bonni and his research team, including Maria Lehtinen, a graduate student in the HMS program in neuroscience, and Zengqiang Yuan, PhD, an HMS research fellow in pathology, in collaboration with Keith Blackwell, MD, PhD, HMS associate professor of pathology, have now defined how a molecular chain-of-events links oxidative-stress signals to cell death in brain neurons.

In the course of investigating the mechanisms of cell death in neurons from rat brain, the team focused their attention on the function of a protein called MST, which had been previously implicated in cell death. They found that exposure of brain neurons to oxidative-stress signals stimulates the activity of MST, and once activated, MST instructs neurons to die. The researchers also found a tight link between MST and another family of molecules called FOXO proteins. FOXO proteins turn on genes in the nucleus, the command center of the cell. Once stimulated by oxidative stress, MST acts in its capacity as an enzyme to modify and thereby activate the FOXO proteins, instructing the FOXO proteins to move from the periphery of the cell into the nucleus of neurons. Once in the nucleus, the FOXO proteins were found to turn on genes that commit neurons to programmed death.

The discovery of the MST-FOXO biochemical switch mechanism fills a gap in our understanding of how oxidative stress elicits biological responses in neurons, and may include besides cell death, neuronal dysfunction and neuronal recovery. Since oxidative stress in neurons and other cells in the body contribute to tissue damage in a variety of disorders, including stroke, ischemic heart disease, neurodegenerative diseases, and diabetes, identification of the MST-FOXO switch mechanism could provide potential new targets for the diagnosis and treatment of many common age-associated diseases.


'"/>

Source:Harvard Medical School


Related biology news :

1. Researchers extend mouse lifespan by protecting against free radicals
2. A radical solution for environmental pollution
3. Free-radical busting antioxidants might not promote healthy hearts
4. Delft water-purification method promises radical improvement
5. Combination therapy boosts effectiveness of telomere-directed cancer cell death
6. Enzyme allows B cells to resist death, leading to leukemia
7. Critical role in programmed cell death identified
8. A comprehensive response to HIV could prevent 10 million AIDS deaths in Africa by 2020
9. The death of a very special chimpanzee
10. The very unexpected life and death of a leukemic cell
11. Solutions that reduce death of marine life reeled in by International Smart Gear Competition
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/8/2016)... , March 8, 2016   Valencell , ... today announced it has secured $11M in Series ... Tech, a new venture fund being launched by ... participation from existing investors TDF Ventures and WSJ ... to continue its triple-digit growth and accelerate its ...
(Date:3/3/2016)... March 3, 2016  2016FLEX, organized by FlexTech, ... highlighting advancements in flexible, hybrid and printed electronics. ... attendance - have gathered for short courses, technical ... of electronics. The Flex Conference celebrates its 15 ... companies, R&D organizations, and universities contributing to the ...
(Date:3/2/2016)... http://www.researchandmarkets.com/research/wzwqtz/global_biometrics ... "Global Biometrics Market in Hospitality Sector 2016-2020" ... , , Global biometrics market in the ... of around 27%   --> ... addition of the  "Global Biometrics Market in ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... , May 4, 2016 According ... Research "Metabolomics Market - Global Industry Analysis, Size, Share, ... market is anticipated to expand at a CAGR of ... million by 2024. Metabolomics is the extensive ... cells, biofluids, tissues or organisms. Together, these small molecules ...
(Date:5/3/2016)... India , May 3, 2016 /PRNewswire/ ... (DNA Chip (Genomics, Drug Discovery, Gene Expression) ... End user (Academics Institutes, Diagnostics Centers), Fabrication ... published by MarketsandMarkets, the market is expected ... from USD 7.63 Billion in 2015, growing ...
(Date:5/3/2016)... Boston, Massachusetts (PRWEB) , ... May 03, 2016 ... ... communities will gather at Boston CEO 2016 on May 31st and June 1st ... off-the-record networking forum for leading executives in the life sciences, offering exclusive access ...
(Date:5/3/2016)... ... May 03, 2016 , ... ... the sensor and data driven conferences, will take place on June 7-8, 2016, at the New ... Vidya Raman-Tangella on incorporating technology -- including AR/VR, machine learning, apps, robotics and AI ...
Breaking Biology Technology: