Navigation Links
Free-energy theory borne out in large-scale protein folding

In unprecedented new research, scientists at Rice University have combined theory and experiment for the first time to both predict theoretically and verify experimentally the protein-folding dynamics of a large, complex protein.

The interdisciplinary research appears this week in two back-to-back papers in the Proceedings of the National Academy of Sciences.

"Researchers have successfully combined computer modeling and experimental results in folding studies for small proteins, but this is the first effective combination for a large, multi-domain protein," said study co-author Kathleen Matthews, Dean of the Wiess School of Natural Sciences and Stewart Memorial Professor of Biochemistry. "Pioneering efforts were required to establish comparable experimental and theoretical data, and the method worked remarkably well. We expect others to adopt it in their own studies."

Proteins are the workhorses of biology. At any given time, each cell in our bodies contains 10,000 or more of them. Each of these proteins is a chain of amino acids strung end-to-end like beads in necklace. For longer proteins, the chain can contain hundreds of amino acids.

Thanks to modern genomics, scientists can use DNA to decipher the amino acid sequence in a protein. But knowing the sequence gives no clue to the protein's function, because function is inextricably tied to shape, and every protein self-assembles into its characteristic shape within seconds of being created.

"The folded, functional form of the protein is what really matters, and our interest is in creating a folding roadmap of sorts, a plot of the thermodynamic route that the protein follows as it moves toward equilibrium," said co-author Cecilia Clementi, the Norman Hackerman-Welch Young Investigator Assistant Professor of Chemistry.

The Rice research team included Clementi, Clementi's graduate student Payel Das, experimentalist Pernilla Wittung-Stafshede, associate professor of bioche mistry and cell biology, Matthews and graduate student Corey Wilson of biochemistry and cell biology.

"We know that misfolded proteins play a key but mysterious role in Alzheimer's, Parkinson's, diabetes and a host of other diseases, so mapping the normal route a protein takes - and finding the off-ramps that might lead to misfolding ?are vitally important," Wittung-Stafshede said.

Rice's studies were carried out on monomeric lactose repressor protein, or MLAc, a variant of the protein used by E. coli to regulate expression of the proteins that transport and metabolize lactose. MLAc contains about 360 amino acids.

While scientists know proteins containing 100 or fewer amino acids fold in a very cooperative (all-or-none) fashion, it is believed that larger proteins fold through the formation of partially folded intermediate structures before settling into their final state.

Simulating large-scale protein folding is too complex for even the most powerful supercomputer. In developing a theoretical approach that allows studying protein folding on a computer, Clementi and Das relied on the techniques of statistical mechanics, building up an overall picture of MLAc folding based upon statistical approximations of molecular events.

On the experimental side, Wittung-Stafshede, Matthews and Wilson prepared samples of MLAc and added urea to cause them to unfold. The team then injected water into the solution very fast, diluting the mixture and causing the proteins to fold. Using spectroscopy, they captured fluorescence and ultraviolet polarization patterns given off by the proteins as they folded.

"The novelty of this work is the direct and quantitative comparison of the time-dependent simulation data with the experimental measurements from circular dichroism and tryptophan fluorescence," Das said. "The excellent agreement between experiment and theory illustrates that the existence of a well-defined "folding route", at least fo r large proteins, can be predicted within the framework of free-energy landscape theory. This has been a very controversial issue in the field of protein folding."

Study co-authors also included Giovanni Fossati, assistant professor of physics and astronomy, who helped the team analyze and interpret the simulation data.


'"/>

Source:Rice University


Related biology news :

1. Study casts doubt on Snowball Earth theory
2. New evidence supports century-old theory of cancer spread
3. Pitt professors theory of evolution gets boost from cell research
4. Ernst Mayrs theory illustrated in genetic epidemiology studies
5. Why nerve cells work faster than the theory allows
6. Mayo Clinic researchers challenge sepsis theory
7. Methane-belching bugs inspire a new theory of the origin of life on Earth
8. New dyslexia theory blames noise
9. Hofmeyr skull supports the Out of Africa theory
10. New studies suggest airborne SARS transmission is possible
11. WHO Warns Of Increased Risk Of Vector-borne Diseases In Tsunami-affected Areas
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/6/2017)... -- RAM Group , Singaporean based technology ... biometric authentication based on a novel  quantum-state ... perform biometric authentication. These new sensors are based on a ... Group and its partners. This sensor will have widespread ... security. Ram Group is a next generation sensor ...
(Date:4/18/2017)... 18, 2017  Socionext Inc., a global expert in SoC-based imaging ... server, the M820, which features the company,s hybrid codec technology. A ... Tera Probe, Inc., will be showcased during the upcoming Medtec Japan ... at the Las Vegas Convention Center April ... Click here for ...
(Date:4/13/2017)... According to a new market research report "Consumer ... Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - ... to grow from USD 14.30 Billion in 2017 to USD 31.75 Billion ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... ... announced today it will be hosting a Webinar titled, “Pathology is going digital. ... Associates , on digital pathology adoption best practices and how Proscia improves lab ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving ... those living in larger cities are affected by air pollution related diseases. , That ... countries globally - decided to take action. , “I knew I had to take ...
(Date:10/10/2017)... , ... October 10, 2017 , ... San Diego-based team ... its corporate rebranding initiative announced today. The bold new look is part of ... the company moves into a significant growth period. , It will also expand its ...
(Date:10/10/2017)... ... 10, 2017 , ... Dr. Bob Harman, founder and CEO of VetStem ... The event entitled “Stem Cells and Their Regenerative Powers,” was held ... Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, M.D., Chief ...
Breaking Biology Technology: