Navigation Links
For some young fish, early gene expression is a clear harbinger of fated lifestyle

As juveniles, individuals of many fish species face a developmental choice that will profoundly affect their future: whether to adopt a sedentary or migratory lifestyle.

Sedentary (or "residential") individuals remain in the region of their birth, while their migratory compatriots set forth on long open-water journeys. The developmental choice of the residential versus migratory "life history" is known to be influenced by environmental factors, but is not well understood at the genetic level. Researchers now report that fish that are very closely related genetically show dramatically different patterns of actual gene expression if they have adopted different lifestyle fates. Moreover, and perhaps more surprisingly, less-related individuals from geographically different populations nonetheless exhibit very similar patterns of gene expression if they have adopted the same fate--residential or migratory. Thus, the researchers found that levels of expression of a great many genes depend primarily on an individual's future lifestyle.

The findings, which illuminate how programs of gene expression have evolved to control profoundly different developmental outcomes, are reported in the April 18th issue of Current Biology by Drs. Thomas Giger, Carlo Largiadèr, and Laurent Excoffier of the University of Bern, along with colleagues from France, Ireland, Denmark, and the UK.

Salmonid fish, which include trout and whitefish as well as salmon, show exceptional levels of life-history variation--that is, residential and migratory types often co-occur within a single population of young fish. Before reaching sexual maturity and leaving their natal stream, migratory individuals undergo dramatic morphological, physiological, and behavioral changes that prepare them for adulthood in open fresh and salty waters.

In their innovative work, which is based on studying the gene expression profiles of hundreds of genes at a time in different fish populations, t he researchers studied gene expression in two species--strains of the brown trout, Salmo trutta, and a strain of the Atlantic salmon, Salmo salar. The researchers showed that many genes of genetically similar sedentary and migrant populations living in the same river were expressed at different levels. At the same time, two sedentary brown trout populations from Denmark and France, despite having diverged half a million years ago, showed very similar gene expression profiles. This remarkable similarity in gene expression between populations sharing the same life history--but being genetically very divergent and occupying different habitats--suggests that the genetic program of a given life history has been a highly selected attribute during the evolution of brown trout populations.

The findings also indicate that such striking differences in gene expression profiles are probably controlled by only a few major genes.

In addition, the authors showed that while there is a large diversity in gene expression levels between individuals from the same population, the different expression profiles associated with lifestyle fates were so distinct that by measuring the expression levels of relevant genes, it was possible to predict the future lifestyle of fish at the juvenile stage.


'"/>

Source:Cell Press


Related biology news :

1. Live fast, die young true for forests too
2. High rates of sexually transmitted infections found in young drug users
3. Sharp older brains are not the same as younger brains
4. Thinner and younger
5. Even fish dont swim well when theyre young!
6. Life and death in the hippocampus: what young neurons need to survive
7. Wild meerkats school their young
8. PET imaging shows young smokers quick benefit of quitting
9. In young mice, gregariousness seems to reside in the genes
10. Agilent Technologies introduces advanced zebrafish, mouse microarrays for stem cell and developmental biology research
11. Sudden change in social status triggers genetic response in male fish, study finds
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based and ... 2022", published by MarketsandMarkets, the market is expected to be worth USD 18.98 ... Continue Reading ... ...      ...
(Date:3/20/2017)... HANOVER, Germany , March 20, 2017 At ... Hamburg -based biometrics manufacturer DERMALOG. The Chancellor came to the ... Japan is this year,s CeBIT partner country. At the largest ... important biometrics in use: fingerprint, face and iris recognition as well as ... ...
(Date:3/9/2017)... MOUNTAIN VIEW, Calif. , March 9, 2017 ... and 23andMe , the leading personal genetics company, ... Zipongo can now provide customers with personalized nutrition plans ... and biometrics, but also genetic markers impacting how their ... Zipongo,s personalized food decision support platform uses biometrics such ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... , March 28, 2017 /PRNewswire/ -RepliCel Life Sciences Inc. ... pleased to report compelling safety and clinical data from its ... type 1 collagen-expressing, hair follicle-derived fibroblasts (RCT-01) as a treatment ... ... establishing a complete safety profile at 6 months and showed ...
(Date:3/28/2017)... ... March 28, 2017 , ... Executive search ... with Avomeen Analytical Services. Harvill is a distinguished life sciences expert with a ... is a leader in a wide range of services related to laboratory testing ...
(Date:3/27/2017)... ... March 27, 2017 , ... IsoPlexis Corporation (IsoPlexis), a ... disease and more through a single-cell precision engineering platform, today announced it has ... in the laboratory of Dr. James Heath at the California Institute of ...
(Date:3/27/2017)... (PRWEB) , ... March 27, 2017 , ... ... cancer (mCRC) generally produce small, heterogeneous samples with limited tumor content in a ... remain to be resolved, such as the need for reliable detection of low ...
Breaking Biology Technology: