Navigation Links
For many insects, winter survival is in the genes

Many insects living in northern climates don't die at the first signs of cold weather. Rather, new research suggests that they use a number of specialized proteins to survive the chilly months.

These so-called "heat-shock proteins" ensure that the insects will be back to bug us come spring.

A study of flesh flies and a handful of other insects suggests that they have an arsenal of protective heat-shock proteins that are turned on almost as soon as the temperature dips. Until this new study, researchers knew of only two such proteins that were activated in flesh flies during cooler weather.

"Insects need heat-shock proteins in order to survive," said David Denlinger, the study's lead author and a professor of entomology at Ohio State University. "Without these proteins, insects can't bear the cold and will ultimately die."

Denlinger and his colleagues found nearly a dozen additional heat-shock proteins that are activated during diapause, a hibernation-like state that insects enter when temperatures drop. Insects can stay in this state of arrested development for several months.

"We certainly didn't expect to find that many proteins active during diapause," Denlinger said. The researchers report their findings in the current online early edition of the Proceedings of the National Academy of Sciences.

Insects and other animals, including humans, produce heat-shock proteins in response to extremely high temperatures. The proteins are so named because they were initially discovered in fruit flies that were exposed to high heat. Humans make these proteins when we run a high fever.

"But insects make these very same stress proteins during times of low temperature as well as during exposure to high levels of toxic chemicals, dehydration and even desiccation," Denlinger said.

He and his colleagues first figured out how many genes were turned on only during the flesh fly's dormant state. The resear chers extracted and compared RNA from both dormant and non-dormant fly pupae – the developmental stage between larva and adulthood. They used a laboratory technique that let them separate out genes that were turned on only in the flies in this dormant state.

The researchers found 11 previously undiscovered genes that turn on heat-shock proteins during diapause. Until this study, they had only known of two such proteins.

Denlinger and his team also examined the expression of one of those previously discovered heat-shock proteins, Hsp70, in five additional insect species that aren't related to the flesh fly. Each insect is a fairly common agricultural pest: the gypsy moth, the European corn borer, the walnut husk maggot, the apple maggot and the tobacco hornworm. Collectively, these species cause millions of dollars of damage annually.

Hsp70 was active while all of the insects were in diapause.

When Denlinger's team knocked out the Hsp70 gene that makes the heat-shock protein, the insects were unable to survive at a low temperature (in this case, insects were exposed to -15°C, or 5°F.)

"This underscores the essential role of this gene for winter survival, suggesting that this particular heat-shock protein is a major contributor to cold tolerance in insects," Denlinger said. "It's highly likely that the other heat-shock proteins we found during diapause in the flesh fly are also important to an insect's ability to endure months of cold temperatures."

Denlinger has no plans to develop a method to get rid of heat-shock proteins in insect pests, but he says that it is important to understand how insects survive through the winter.

"There may be steps we can take to disrupt the diapause process and make an insect vulnerable to low temperatures," Denlinger said. "At this point, the findings broaden our palette of players that contribute to cold tolerance in insects."

He said the next step is to figure out the unique functions of each heat-shock protein.

"We assume it's not simply redundancy in the system, but that each protein makes a unique contribution somehow," Denlinger said. "This protective mechanism is much more complex than we envisioned."


'"/>

Source:Ohio State University


Related biology news :

1. New winter hulless barley has high protein
2. Gray wolves maintain the food chain in winter
3. Mice brains shrink during winter, impairing some learning and memory
4. In SAD patients, autumn antidepressants can prevent winter depression
5. Melatonin improves mood in winter depression
6. The Bacterias guide to survival
7. Boosting HIV screening can increase survival and is cost effective
8. Researchers identify protein crucial for survival of Lyme-disease bacterium
9. Novel protein complex enables survival in hostile environment
10. BiovaxID?yields 89 percent survival in patients with aggressive non-Hodgkins
11. UCI researchers discover key factor for survival of human embryonic stem cells

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/11/2017)... Intoxalock, a leading ignition interlock provider, has ... patent-pending calibration device. With this new technology, Intoxalock is ... data logs and process repairs at service center locations, ... drunk driving through the application of cutting-edge technologies is ... also for the customer who can get back on ...
(Date:1/6/2017)... Calif. , Jan. 6, 2017  Privately-held ... safety studies in healthy volunteers of a novel ... to treat acute pancreatitis. Acute ... typically a mild disorder, but can be very ... failure and sepsis, where extended hospital stays, time ...
(Date:1/6/2017)... Calif. , Jan. 5, 2017  Delta ID ... its iris scanning technology for automotive at CES® 2017. ... GNTX ) to demonstrate the use of iris ... identify and authenticate the driver in a car, and ... during the driving experience. Delta ID and ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... Jan. 20, 2017 Interpace Diagnostics Group, ... that provides clinically useful molecular diagnostic tests and ... into a securities purchase agreement with three  institutional ... of common stock in a registered direct offering.  ... agreed to sell to the same investors warrants ...
(Date:1/20/2017)... , January 20, 2017 Stock-Callers.com ... conditions have influenced the most recent performances of select ... (NASDAQ: RGLS ), Abeona Therapeutics Inc. (NASDAQ: ... TBPH ), and Sage Therapeutics Inc. (NASDAQ: ... by Grand View Research, global Biotech market size is expected to ...
(Date:1/19/2017)... Research Future has a half cooked research report on Global Liquid ... and expected to reach USD 450 Million by the end of ... ... assessed as a swiftly growing market and expected that the market ... There has been a tremendous growth in the prevalence of cancer ...
(Date:1/19/2017)... ... January 19, 2017 , ... November Research Group, ... biopharmaceutical and medical device manufacturers and regulators, is proud to announce the worldwide ... email client designed to provide product vigilance departments with the flexibility and ease ...
Breaking Biology Technology: