Navigation Links
For first time, brain cells generated in a dish

Regenerative medicine scientists at the University of Florida's McKnight Brain Institute have created a system in rodent models that for the first time duplicates neurogenesis -- the process of generating new brain cells -- in a dish.

Writing in today's (June 13) Proceedings of the National Academy of Sciences, researchers describe a cell culture method that holds the promise of producing a limitless supply of a person's own brain cells to potentially heal disorders such as Parkinson's disease or epilepsy.

"It's like an assembly line to manufacture and increase the number of brain cells," said Bjorn Scheffler, M.D., a neuroscientist with UF's College of Medicine. "We can basically take these cells and freeze them until we need them. Then we thaw them, begin a cell-generating process, and produce a ton of new neurons."

If the discovery can translate to human applications, it will enhance efforts aimed at finding ways to use large numbers of a person's own cells to restore damaged brain function, partially because the technique produces cells in far greater amounts than the body can on its own.

In addition, the discovery pinpoints the cell that is truly what people refer to when they say "stem cell." Although the term is used frequently to describe immature cells that are the building blocks of bones, skin, flesh and organs, the actual stem cell as it exists in the brain has been enigmatic, according to Dennis Steindler, Ph.D., executive director of the McKnight Brain Institute and senior author of the paper. Its general location was known, but it was an obscure species in a sea of cell types.

"We've isolated for the first time what appears to be the true candidate stem cell," said Steindler, a neuroscientist and member of UF's Program of Stem Cell Biology and Regenerative Medicine. "There have been other candidates, but in this case we used a special microscope that allows us to watch living cells over long periods of time throu gh a method called live-cell microscopy, so we've actually witnessed the stem cell give rise to new neurons. Possibly a different method may come up to identify the mother of all stem cells, but we're confident this is it."

During experiments, scientists collected cells from mice and used chemicals to induce them to differentiate. During the process, they snapped images of the cells every five minutes for up to 30 hours and compiled the images into movies. Traditional ways to attempt neurogenesis have been unable to so closely duplicate the natural process. They also haven't allowed scientists to monitor the entire sequence of cell development from primitive states to functional neurons and expose the electrophysiological properties of the cells.

A little more than a decade ago, scientists came to realize that the brain continues to produce small amounts of new cells even in adulthood, overturning the belief that people are born with a fixed amount of brain cells that must last them throughout their lives.

In people, stem cells develop naturally into full-fledged brain cells as they travel through a neural pathway that begins deep within the brain in a region called the subventricular zone. The primitive cells mature along the way, finishing as neurons in a spot called the olfactory bulb.

In the laboratory cultures, the cells still move about, but the pathway is no longer important, showing that neurogenesis does not necessarily require the environmental cues of the host brain.

The natural development of stem cells in the brain is very similar to the lifelong production of blood cells in the human body called hematopoiesis, with "poiesis" derived from the Greek word meaning "to make."

Scientists in Steindler's lab noticed the similarities between primitive cell development in blood and in the brain in the late 1990s, calling the process "neuropoiesis."

"The exciting part is we are actually using methods that re searchers involved with hematopoiesis used," Scheffler said. "Those researchers took primitive cells, put them in a dish and watched them perform. From that, they learned vital information for clinical applications such as bone marrow transplants. Now we have a tool to do exactly the same thing."

By watching the cells perform, scientists can make judgments and influence the capacity of the cells to generate specific neurons.

"As far as regenerating parts of the brain that have degenerated, such as in Parkinson's disease, Huntington's disease and others of that nature, the ability to regenerate the needed cell type and placing it in the correct spot would have major impact," said Dr. Eric Holland, a neurosurgeon at Memorial Sloan-Kettering Cancer Center in New York who specializes in the treatment of brain tumors, but who is not connected to the research. "In terms of tumors, it's known that stem-like cells have characteristics much like cancer cells. Knowing what makes these cells tick may help by furthering our knowledge of the biology of the tumor."


'"/>

Source:University of Florida


Related biology news :

1. A genes first kiss sets off that affair known as puberty
2. Love at first smell
3. Worlds largest rainforest drying experiment completes first phase
4. PCRM develops worlds first cruelty-free insulin assay
5. Expression Project for Oncology (expO) completes first phase of standardized gene expression analyses
6. World-first Living Donor Islet Cell Transplant A Success; Procedure Offers Promise For Diabetics
7. DuPonts first biologically derived polymer receives global recognition
8. Anti cancer virotherapy well tolerated in first human administration, research finds
9. Unlike other mammals, newborn dolphins and orcas stay active 24/7 during first months of development
10. The first impact factor for PLoS Biology ?13.9
11. Moffitt-USF head toward first human trials of anti-cancer drug that targets protein AKT
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/15/2016)... 15, 2016 Transparency Market ... Recognition Market by Application Market - Global Industry Analysis Size ... to the report, the  global gesture recognition market ... and is estimated to grow at a CAGR ... 2024.  Increasing application of gesture recognition ...
(Date:6/9/2016)... June 9, 2016 Paris ... Teleste,s video security solution to ensure the safety of people ... during the major tournament Teleste, an international ... and services, announced today that its video security solution will ... to back up public safety across the country. The system ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... ... December 06, 2016 , ... The Osteoarthritis Research Society International ... Administration (FDA) to consider OA as a serious disease. As an organization of ... population of OA patients, many of whom may experience progressive disability and decreased ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... Partners ("GPP") portfolio company, today announced it has acquired the assets of ... of Chiltern International and focuses on clinical trial drug packaging, labeling, storage, ...
(Date:12/6/2016)... 2016  SRI International has been awarded a ... National Institutes of Health,s National Institute of Allergy ... (NIAID-DAIDS) to support the manufacturing and characterization of ... Under the seven-year contract, SRI will provide a ... candidate HIV-prevention products that emerge from investigator-initiated studies ...
(Date:12/5/2016)... , Dec. 5, 2016 Axovant Sciences Ltd. ... company focused on the treatment of dementia, today announced ... the treatment of Alzheimer,s disease will be presented at ... on Friday, December 9, 2016 in San ... results of both simple and complex measures of activities ...
Breaking Biology Technology: