Navigation Links
Fish extinctions alter critical nutrients in water, study shows

Ecosystems are such intricate webs of connections that few studies have been able to explore exactly what happens when a species dies out.

Now, a Cornell study using computer simulations has teased out how the disappearance of a freshwater fish can affect the availability of certain nutrients that other species rely on.

Algae, at the base of the food chain, for example, rely on fish to cycle back into the water such nutrients as nitrogen and phosphorus, which are otherwise locked up in animal or plant cells. Fish excrete dissolved nutrients back into the water, making them available to algae, which need them to grow.

The study, published in the Feb. 27 issue of the Proceedings of the National Academy of Sciences, finds that overfishing could threaten the overall health of an ecosystem because it targets important fish species that play major roles in recycling nutrients. In fact, 20 percent of fish species accounted for more than half of all the recycled nutrients in the ecosystems studied, the computer simulations found.

"The loss of the most heavily fished species led to the fastest declines in nutrient recycling," said lead author Peter McIntyre, a postdoctoral researcher at Wright State University who was a graduate student in Cornell's Department of Ecology and Evolutionary Biology when he conducted the study. "Fishermen are targeting relatively large and abundant species that happen to play a major role in nutrient recycling."

The simulations, which relied on data from Rio Las Marias, a Venezeulan river, and Lake Tanganyika, a massive lake bordering Tanzania, Zaire, Zambia and Burundi, also shed light on the roles that surviving species might play in replacing the lost nutrients. In both ecosystems studied, when surviving species successfully picked up the slack in nutrient recycling left by an extinct species, nitrogen and phosphorus were maintained at 80 percent of their starting values until over half the total num ber of species were lost.

Studies of complex ecosystems, especially those involving large, highly mobile fish, are almost impossible to carry out in the wild, but new methods are helping researchers better understand these systems.

"Computer simulations provide a means to assess patterns of species loss in a system in which we just cannot do complex experiments," said co-author Alex Flecker, Cornell associate professor of ecology and evolutionary biology, who served as McIntyre's adviser. "But we have to be aware that there is a whole set of assumptions that goes into simulating species loss."

For example, it is unknown whether surviving species can truly compensate for extinctions. In a study of two species of fish in the Venezuelan river that eat mud from the river bottom, Flecker found that the rarer of the two species was unable to make up for the loss of the more common one. Thus, it appears that human overfishing of the common species, coporo (Prochilodus mariae), may have large effects on the ecosystem, in part because of its large contribution to nitrogen recycling.

The current study also revealed that species that heavily recycle nitrogen are not always the same ones that recycle the most phosphorus. These differences would make it difficult for conservationists to prioritize species to protect.
'"/>

Source:Cornell University News Service


Related biology news :

1. Super predators and mass extinctions
2. New study pinpoints epicenters of Earths imminent extinctions
3. Climate change drives widespread amphibian extinctions
4. Man may have caused pre-historic extinctions
5. Birth rate, competition are major players in hominid extinctions
6. Improved predictions of warming-induced extinctions sought
7. Products containing specific probes for detecting alternative splice forms protected
8. Compounds in plastic packaging act as environmental estrogens altering breast genes
9. Plant pathologists evaluate eco-friendly alternatives to methyl bromide
10. New technique could alter field of mouse genetics
11. Genetic variation alters response to common anti-clotting drug

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
Breaking Biology News(10 mins):
(Date:9/15/2017)... ... September 15, 2017 , ... San Diego based ... ‘Internal Seed B’ round of financing, totaling $600,000. The round was entirely ... ‘SAFE’ documentation structure at a company valuation of $10M. , Grolltex, ...
(Date:9/14/2017)... ... September 14, 2017 , ... ... (CC) product portfolio, clinically-relevant starting and ancillary materials that generate unprecedented efficiencies ... Cell (hMSC)-based therapies. The CliniControl product portfolio will radically simplify major steps ...
(Date:9/14/2017)... ... September 14, 2017 , ... One of the world’s largest World ... , For six hours that day, the GenCure Marrow Donor Program will be signing ... H-E-B grocery stores in San Antonio. , The registration tables will be staffed by ...
(Date:9/13/2017)... ... September 13, 2017 , ... ... life sciences industry to improve patient outcomes and quality of life for more ... has been named a US expert to the International Standards Organization/Technical Committee ...
Breaking Biology Technology: