Navigation Links
Fantastic Voyage: A new nanoscale view of the biological world

Echoing the journey through the human body in Fantastic Voyage, doctors might soon be able to track individual donor cells after a transplant, or to find where and how much of a cancer treatment drug there is within a cell. New technology described in a study published today in the open access journal Journal of Biology makes it possible to image and quantify molecules within individual mammalian or bacterial cells. Claude Lechene and colleagues describe the development of multi-isotope imaging mass spectrometry (MIMS), which has applications in all fields of biology and biomedical research.

"This method allows us to see what has never been seen before, and to measure what has never before been measured," Lechene says. "Imagine looking into a building, slice by slice. You can see not only that it contains apartments, but also that each apartment contains a refrigerator. You can see that there are tomatoes in the refrigerator of one apartment, and potatoes in the refrigerator of another. You can count how many there are and measure how fast they are used and replaced. It is this level of resolution and quantification that MIMS makes possible within cells."

Lechene, of Harvard Medical School and Brigham and Women's Hospital in the US, worked with colleagues from around the world to develop and test the new methodology.

A beam of ions is used to bombard the surface atoms of the biological sample, and a fraction of the atoms are emitted and ionized. These "secondary ions" can then be manipulated with ion optics ?in the way lenses and prisms manipulate visible light - to create an atomic mass image of the sample. Lechene et al. developed MIMS by combining the use of a novel secondary-ion mass spectrometer developed by Georges Slodzian, from the Université Paris-Sud in France, labeling with stable isotopes and building quantitative image-analysis software.

MIMS can generate quantitative, three-dimensional images of proteins, DNA , RNA, sugar and fatty acids at a subcellular level in tissue sections or cells. "Using MIMS, we can image and quantify the fate of these molecules when they go into cells, where they go, and how quickly they are replaced," says Lechene.

The method does not need staining or use of radioactive labelling. Instead, it is possible to use stable isotopes to track molecules. For example, researchers could track stem cells by labelling DNA with 15N. "These stable isotopes do not alter the DNA and are not toxic to people; with MIMS and stable isotope labelling we could track these cells, where they are and how they have changed several years later," says Lechene.

"The most significant feature of this technique is that it opens up a whole new world of imaging; we haven't yet imagined all that we can do with it," says Peter Gillespie from the Oregon Health and Science University in Portland, USA in an accompanying news article, also published today in Journal of Biology.

Source:BioMed Central

Related biology news :

1. Marine sponge yields nanoscale secrets
2. Rice scientists make first nanoscale pH meter
3. Blood-compatible nanoscale materials possible using heparin
4. Embryonic stem cells do better on bumpy nanoscale mattress
5. Spelling out cancer on the nanoscale
6. Researchers to develop active nanoscale surfaces for biological separations
7. Bones at the nanoscale
8. Penn researcher shows that DNA gets kinky easily at the nanoscale
9. NYU researchers simulate molecular biological clock
10. Automatic extraction of gene/protein biological functions from biomedical text
11. DuPonts first biologically derived polymer receives global recognition

Post Your Comments:

(Date:4/5/2017)... NEW YORK , April 5, 2017 ... security, is announcing that the server component of the ... is known for providing the end-to-end security architecture that ... customers. HYPR has already secured over 15 ... system makers including manufacturers of connected home product suites ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
(Date:3/30/2017)... 2017  On April 6-7, 2017, will host ... hackathon at Microsoft,s headquarters in Redmond, ... on developing health and wellness apps that provide a ... Genome is the first hackathon for personal genomics ... companies in the genomics, tech and health industries are ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a global contract ... to improve patient outcomes and quality of life, will now be offering its ... attributed to new regulatory requirements for all new drug products, including the finalization ...
(Date:10/11/2017)... YORBA LINDA, CA (PRWEB) , ... October 11, ... ... adapted to upregulate any gene in its endogenous context, enabling overexpression experiments and ... activation (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... today it will be hosting a Webinar titled, “Pathology is going digital. Is ... , on digital pathology adoption best practices and how Proscia improves lab economics ...
(Date:10/11/2017)... Tbilisi, Georgia (PRWEB) , ... October 11, 2017 , ... ... disaster, taking the lives of over 5.5 million people each year. Especially those living ... the greenovative startup Treepex - based in one of the most pollution-affected countries globally ...
Breaking Biology Technology: