Navigation Links
FSU biologists describe key role of signal-transcribing gene during cell cycle

Study in Oct. 1 'Development' shows when, where Alzheimer's, some cancers and genetic ills beginT. Biologists at Florida State University have uncovered the pivotal role of a gene called "Cut" that acts as a sort of middleman in cell-to-cell communication.

A DNA-binding protein, Cut interprets and transcribes the developmental signals sent through the "Notch" gene, which regulates a layer of epithelial cells as they replicate and divide. But when Cut garbles those signals the result is uncontrolled cell proliferation, sometimes with dire genetic and health consequences.

Results of the study are described in the Oct. 1 edition of the journal Development.

Led by FSU assistant professor Wu-Min Deng, the research has provided a more precise understanding of just how and where molecular mechanisms that drive cell cycle behavior and fate go wrong along the critical Notch pathway ?? a communication channel already associated with the genesis of several genetic and neuromuscular diseases; the most common complex congenital heart disorder; and later life ills such as Alzheimer's, breast and lung cancer, and leukemia.

"We now know that the transcription factor Cut is the key there," said Deng.

Assisted by FSU graduate student and co-author Jianjun Sun, Deng conducted the study using the powerful Drosophila (fruit fly) genetic model. Over the course of a year, they tracked the cell-to-cell communication in Drosophila egg chambers that control cell proliferation.

"We believe the specific cell-to-cell signaling and dysfunction observed in fruit flies is applicable to mammals, which also possess genes Notch and Cut," said Deng.

The researchers traced the journey of transmissions originating from Notch ?? which carries information gleaned from other cells ?? following the signals down the Notch pathway as Cut linked them to the control of cell proliferation in the egg chambers, which they observed at different stages.

When Cut accurately transcribed the Notch signals, the cells progressed appropriately from the conventional mitosis (replication and division) to the specialized endocycle, where cells cease division but still replicate their DNA.

But if Notch-to-Cut communication and Cut transcription were dysfunctional, so, too, was the cell cycle. In that case, the essential switch from mitosis to the endocycle failed, resulting in unregulated growth.

According to Deng, knowing exactly how and where in the Notch pathway early developmental signals get crossed may be crucial to future fixes, since mutations to the molecular mechanisms there are linked in humans to specific congenital and later life disorders.

"With further study, these findings may aid the development of interventions that target certain diseases precisely where and when they begin at the molecular level," he said.

Deng's focus on Cut since joining the biological sciences faculty at FSU in 2004 followed a Notch study he also co-authored, which appeared in a 2001 issue of Development.


'"/>

Source:Florida State University


Related biology news :

1. Octopuses occasionally stroll around on two arms, UC Berkeley biologists report
2. GeneNotes - A novel information management software for biologists
3. NYU biologists map out early stages of embryo formation
4. High-tech tags on marine animals yield valuable data for biologists and oceanographers
5. UCSD biologists find new evidence for one-way evolution
6. UC San Diego biologists solve plant growth hormone enigma
7. FSU biologists uncover mechanisms that shape cells for better or worse
8. NYU biologists identify gene that coordinates two cellular processes
9. MIT biologists solve vitamin puzzle
10. Yale biologists trick viruses into extinction
11. Brown cancer biologists identify major player in cell growth
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
(Date:3/24/2017)... , March 24, 2017 The Controller General ... Controller Mr. Abdulla Algeen have received the prestigious international IAIR ... Continue Reading ... ... picture) and Deputy Controller Abdulla Algeen (small picture on the right) have ...
(Date:3/23/2017)... -- Research and Markets has announced the addition of ... Industry Forecast to 2025" report to their offering. ... The Global Vehicle Anti-Theft ... 8.8% over the next decade to reach approximately $14.21 billion by ... and forecasts for all the given segments on global as well ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for ... June 2018 in San Francisco, CA. The Summit brings together current and former FDA ... board directors and government officials from around the world to address key issues in ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving ... those living in larger cities are affected by air pollution related diseases. , That ... countries globally - decided to take action. , “I knew I had to take ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... conjugate (ADC) therapeutics, today confirmed licensing rights that give it exclusive global ... technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). Additionally, ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
Breaking Biology Technology: