Navigation Links
Exploring the molecular origin of blood clot flexibility

How do blood clots maintain that precise balance of stiffness for wound healing and flexibility to go with the flow? Researchers at the University of Pennsylvania School of Medicine and the School of Arts and Sciences have shown that a well-known protein structure acts as a molecular spring, explaining one way that clots may stretch and bend under such physical stresses as blood flow. They report their findings in a Letter in the latest online edition of the Biophysical Journal. This knowledge will inform researchers about clot physiology in such conditions as wound healing, stroke, and cardiovascular disease.

Clots are a three-dimensional network of fibers, made up primarily of the blood protein fibrinogen, which is converted to fibrin during clotting. A blood clot needs to have the right degree of stiffness and plasticity to stem the flow of blood when tissue is damaged, yet be flexible enough so that it does not block blood flow and cause heart attacks and strokes.

In previous research, senior author John W. Weisel, PhD, Professor of Cell and Developmental Biology, measured the elastic properties of individual fibers and found that the fibers, which are long and very thin, bend much more easily than they stretch, suggesting that clots deform in flowing blood or under other stresses, primarily by the bending of their fibers.

The current research extends those earlier findings to the molecular level, suggesting a way that individual fibers flex - by the unraveling of the three, tightly twisted rod-like regions within fibrinogen molecules, called alpha-helical coiled-coils. The researchers measured this change by pulling engineered strands of fibrinogen molecules using an atomic force microscope. This alpha-helical coiled-coil "spring" is a common motif in protein structure, first identified more than 50 years ago and so its stretchiness may have broader implications in biology and medicine.

By understanding mechanical processes a t the molecular level, it may eventually be possible to see how they relate to the mechanical properties of single fibers and a whole clot. This knowledge may enable researchers to make predictions about the function of differently formed fibrin clots in the circulating blood or in a wound. For example, when clots are not stiff enough, problems with bleeding arise, and when clots are too stiff, there may be problems with thrombosis, which results when clots block the flow of blood. First author André Brown, a physics graduate student at Penn, notes that this research is a first step towards understanding the mechanics of the relationship between clot elasticity and disease.

Recent research by other scientists showed that a fibrin fiber could stretch four to five times its original length before snapping. "This is among the most extensible, or stretchy, of polymers that anyone has ever found," says Weisel. "But, how is the stretching happening at a molecular level? We think part of it has to be the unfolding of certain parts of the fibrin molecule, otherwise how can it stretch so much?"

Previous research from senior coauthor Dennis Discher, PhD, Professor in the Physics and Cell & Molecular Biology graduate groups, suggested the possibility that alpha-helical structures in some blood-cell proteins unfold at low levels of mechanical force. But "it wasn't known before that the coiled coil region of the fibrinogen molecule would be the part to unfold under the stress induced by the atomic force microscope," notes Brown.

Once the origins of the mechanical properties of clots are well understood, it may be possible to modulate those properties, note the study authors. "If we can change a certain parameter perhaps we can make a clot that's more or less stiff," explains Weisel. For example, various peptides or proteins, such as antibodies, bind specifically to fibrin, affecting clot structure. The idea would be to use such compounds in peo ple to alter the properties of the clot, so it can be less obstructive and more easily dissolved.

In the future, the researchers will examine other processes at the molecular and fiber levels that may be responsible for the mechanical properties of clots to eventually develop a model that can then be used to predict the effect of changes at one scale on clot properties at other scales. Such a model should be useful for developing prophylactic and therapeutic treatments for many aspects of cardiovascular disease and stroke, suggest the investigators.


'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Source of molecular triggers in cutaneous T cell lymphoma identified
3. Plants, animals share molecular growth mechanisms
4. NYU researchers simulate molecular biological clock
5. Scientists reveal molecular secrets of the malaria parasite
6. Scientists identify molecular events that drive cell senescence
7. Researchers discover molecular mechanism that desensitizes us to cold
8. Findings have implications for tracking disease, drugs at the molecular level
9. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
10. At the molecular level, the predator is the prey
11. By creating molecular bridge, scientists change function of a protein
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... PALM BEACH GARDENS, Fla. , April 11, ... biometric identity management and secure authentication solutions, today ... million contract by Intelligence Advanced Research Projects Activity ... technologies for IARPA,s Thor program. "Innovation ... the onset and IARPA,s Thor program will allow ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
(Date:10/9/2017)... FL (PRWEB) , ... October 09, 2017 , ... The ... scheduled to broadcast first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. ... industry is faced with the challenge of how to continue to feed a growing ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... applications consulting for microscopy and surface analysis, Nanoscience Instruments is now expanding ... offers a broad range of contract analysis services for advanced applications. Services ...
(Date:10/6/2017)... D.C. (PRWEB) , ... October 06, 2017 , ... ... will host a lunch discussion and webinar on INSIGhT, the first-ever adaptive clinical ... Principal Investigator, Dana-Farber Cancer Institute. The event is free and open to the ...
Breaking Biology Technology: