Navigation Links
Evolution mystery: Spider venom and bacteria share same toxin

It's a case of evolutionary detective work. Biology researchers at Lewis & Clark College and the University of Arizona have found evidence for an ancient transfer of a toxin between ancestors of two very dissimilar organisms--spiders and a bacterium. But the mystery remains as how the toxin passed between the two organisms. Their research is published this month in the journal Bioinformatics, 22(3): 264-268, in an article titled "Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria."

"We are piecing together an historical puzzle with evidence from living descendants of an ancient ancestor," said Greta Binford, assistant professor of biology at Lewis & Clark. Her coresearcher on the project is Matthew Cordes, assistant professor of biochemistry and molecular biophysics at the University of Arizona. The toxin is uniquely found in the venom cocktail of brown or violin spiders, including the brown recluse, and in some Corynebacteria. The toxin from the spider's venom can kill flesh at the bite site; the bacterium causes various illnesses in farm animals.

"Our research was inspired by the fact that we have a group of spiders with a unique toxin, and that toxin also happens to exist outside the animal kingdom in this particular bacterium," she added. "A pattern like this raises the possibility of lateral gene transfer as a explanation." Lateral gene transfer refers to the movement of genes between the genomes of unrelated organisms. This contrasts with vertical transfer of genes from parent to offspring.

Cordes and Binford found a common structural motif at the end of both toxic proteins that is not found in any other proteins. Evidence for common ancestry (homology) of the toxins had previously been noted, but this uniquely shared structural bit is best explained by these toxins being more closely related to each other than they are to any other known protein.

"That one structural detail--which resembles a p lug or cork at the end of a barrel-shaped enzyme--is evidence that the spider and bacterium share a relatively recent common ancestor," Cordes said. "Aside from being an example of lateral transfer between very distantly related organisms, this study is an unusual example of using structural motifs in proteins to answer questions about common ancestry when gene sequences are too different to be clear about these relationships."

"We're still left with the question of whether this venom enzyme hopped species from the spider to the bacteria, or the other way around. Either way, the presence of this medically-relevant toxin in one of these groups of organisms is likely the result of transfer from the other lineage," Binford said. "Understanding the importance of this structural motif in the toxic activity may help with developing treatments that minimize the effects of bites of brown recluse and their relatives. If this motif is central to protein function, treatments designed for the spider bites may also work for treating problems caused by the corynebacterial toxin," she added.


Source:Lewis & Clark College

Related biology news :

1. To Stop Evolution: New Way Of Fighting Antibiotic Resistance Demonstrated By Scripps Scientists
2. Evolution of taste receptor may have shaped human sensitivity to toxic compounds
3. Evolution of life on Earth may hold key to finding life in outer space
4. Evolutionary conservation of a mechanism of longevity from worms to mammals
5. Evolutionary biology research techniques predict cancer
6. Evolutionary shifts in olfactory sensitivities in fruit flies
7. Evolution follows few of the possible paths to antibiotic resistance
8. Evolution of irreducible complexity explained
9. Evolutionary scrap-heap challenge: Antifreeze fish make sense out of junk DNA
10. Evolutionary forces explain why women live longer than men
11. Evolution reveals an independent route for diversity in animal form
Post Your Comments:

(Date:11/17/2015)... Paris from 17 th ... Paris from 17 th until 19 th ... leader, has invented the first combined scanner in the world ... scanning surface. Until now two different scanners were required: one ... both on the same surface. This innovation is an ...
(Date:11/17/2015)... Nov. 17, 2015  Vigilant Solutions announces today that ... Board of Directors. --> ... retiring from the partnership at TPG Capital, one of ... over $140 Billion in revenue.  He founded and led ... the TPG companies, from 1997 to 2013.  In his ...
(Date:11/16/2015)... 2015  Synaptics Inc. (NASDAQ: SYNA ), ... announced expansion of its TDDI product portfolio with ... and display driver integration (TDDI) solutions designed to ... TDDI products add to the previously-announced TD4300 ... resolution), and TD4322 (FHD resolution) solutions. All four ...
Breaking Biology News(10 mins):
(Date:11/24/2015)...  PDL BioPharma, Inc. (PDL) (NASDAQ: PDLI ) today ... and chief executive officer, will present at the 27 th ... New York City . The presentation will be ... at 9:30 a.m. EST. and go ... least 15 minutes prior to the presentation to allow for ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... Whitehouse Laboratories ... Laboratory. The new stand-alone facility will be strictly dedicated to basic USP 61, ... and existing clients the chance to have complete chemistry and micro testing performed by ...
(Date:11/23/2015)... with a certain type of lung nodule visible on lung ... cancer than men with similar nodules, according to a new ... the Radiological Society of North America ... Lung nodules are small masses of tissue in the lungs ... appearance on CT. Solid nodules are dense, and they obscure ...
(Date:11/23/2015)... Nov. 23, 2015 China Cord Blood Corporation ... leading provider of cord blood collection, laboratory testing, hematopoietic ... announced its preliminary unaudited financial results for the second ... September 30, 2015. --> ... , Revenues for the second quarter of fiscal 2016 ...
Breaking Biology Technology: