Navigation Links
Evolution mystery: Spider venom and bacteria share same toxin

It's a case of evolutionary detective work. Biology researchers at Lewis & Clark College and the University of Arizona have found evidence for an ancient transfer of a toxin between ancestors of two very dissimilar organisms--spiders and a bacterium. But the mystery remains as how the toxin passed between the two organisms. Their research is published this month in the journal Bioinformatics, 22(3): 264-268, in an article titled "Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria."

"We are piecing together an historical puzzle with evidence from living descendants of an ancient ancestor," said Greta Binford, assistant professor of biology at Lewis & Clark. Her coresearcher on the project is Matthew Cordes, assistant professor of biochemistry and molecular biophysics at the University of Arizona. The toxin is uniquely found in the venom cocktail of brown or violin spiders, including the brown recluse, and in some Corynebacteria. The toxin from the spider's venom can kill flesh at the bite site; the bacterium causes various illnesses in farm animals.

"Our research was inspired by the fact that we have a group of spiders with a unique toxin, and that toxin also happens to exist outside the animal kingdom in this particular bacterium," she added. "A pattern like this raises the possibility of lateral gene transfer as a explanation." Lateral gene transfer refers to the movement of genes between the genomes of unrelated organisms. This contrasts with vertical transfer of genes from parent to offspring.

Cordes and Binford found a common structural motif at the end of both toxic proteins that is not found in any other proteins. Evidence for common ancestry (homology) of the toxins had previously been noted, but this uniquely shared structural bit is best explained by these toxins being more closely related to each other than they are to any other known protein.

"That one structural detail--which resembles a p lug or cork at the end of a barrel-shaped enzyme--is evidence that the spider and bacterium share a relatively recent common ancestor," Cordes said. "Aside from being an example of lateral transfer between very distantly related organisms, this study is an unusual example of using structural motifs in proteins to answer questions about common ancestry when gene sequences are too different to be clear about these relationships."

"We're still left with the question of whether this venom enzyme hopped species from the spider to the bacteria, or the other way around. Either way, the presence of this medically-relevant toxin in one of these groups of organisms is likely the result of transfer from the other lineage," Binford said. "Understanding the importance of this structural motif in the toxic activity may help with developing treatments that minimize the effects of bites of brown recluse and their relatives. If this motif is central to protein function, treatments designed for the spider bites may also work for treating problems caused by the corynebacterial toxin," she added.


'"/>

Source:Lewis & Clark College


Related biology news :

1. To Stop Evolution: New Way Of Fighting Antibiotic Resistance Demonstrated By Scripps Scientists
2. Evolution of taste receptor may have shaped human sensitivity to toxic compounds
3. Evolution of life on Earth may hold key to finding life in outer space
4. Evolutionary conservation of a mechanism of longevity from worms to mammals
5. Evolutionary biology research techniques predict cancer
6. Evolutionary shifts in olfactory sensitivities in fruit flies
7. Evolution follows few of the possible paths to antibiotic resistance
8. Evolution of irreducible complexity explained
9. Evolutionary scrap-heap challenge: Antifreeze fish make sense out of junk DNA
10. Evolutionary forces explain why women live longer than men
11. Evolution reveals an independent route for diversity in animal form
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" ... its 2016 Annual Report on Form 10-K on Thursday April 13, ... ... the Investor Relations section of the Company,s website at http://www.nxt-id.com ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/13/2017)... April 13, 2017 According to a new market ... Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, ... Market is expected to grow from USD 14.30 Billion in 2017 to ... of 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:8/11/2017)... ... August 11, 2017 , ... A staple in the community for ... will incorporate important key elements including a new digital marketing strategy and updated logo. ... them, Bill Miller has partnered with the South Texas Blood & Tissue Center for ...
(Date:8/11/2017)... (PRWEB) , ... August 11, 2017 , ... ... food production, and, in particular, more natural alternatives to synthetic ingredients,” said Matt ... of Third Wave, with the established manufacturing presence and know-how of Biorigin will ...
(Date:8/10/2017)... ... August 09, 2017 , ... Teachers from three Philadelphia ... August 14th through the 16th, the University City Science Center will kick off ... 2016, provides Philadelphia-based middle school educators an opportunity for professional development related to ...
(Date:8/10/2017)... ... ... Each year in the United States more than 300,000 people are hospitalized for ... even worse, the one-year mortality rate is high, ranging from 12 percent to 37 ... Medical Center (Sacramento) and Second Xiangya Hospital of the Central-South University (Hunan, China) might ...
Breaking Biology Technology: