Navigation Links
Engineered yeast speeds ethanol production

Scientists from Whitehead Institute and MIT have engineered yeast that can improve the speed and efficiency of ethanol production, a key component to making biofuels a significant part of the U.S. energy supply.

Currently used as a fuel additive to improve gasoline combustibility, ethanol is often touted as a potential solution to the growing oil-driven energy crisis. But there are significant obstacles to producing ethanol. One is that high ethanol levels are toxic to the yeast that ferments corn and other plant material into ethanol.

By manipulating the yeast genome, the researchers have engineered a new strain of yeast that can tolerate elevated levels of both ethanol and glucose, while producing ethanol faster than un-engineered yeast.

The work will be reported in the Dec. 8 issue of Science.

Fuels such as E85, which is 85 percent ethanol, are becoming common in states where corn is plentiful; however, their use is mainly confined to the Midwest because corn supplies are limited and ethanol production technology is not yet efficient enough.

Boosting efficiency has been an elusive goal, but the researchers, led by Hal Alper, a postdoctoral associate in the laboratories of MIT chemical engineering professor Gregory Stephanopoulos and Whitehead Member Gerald Fink, took a new approach.

The team targeted two proteins that belong to a class of proteins called transcription factors. These proteins typically control large groups of genes, regulating when these genes are turned on or shut off.

When the researchers altered a transcription factor called the TATA-binding protein, it caused the over-expression of at least a dozen genes, all of which were found to be necessary to elicit an improved ethanol tolerance. As a result, that strain of yeast was able to survive high ethanol concentrations.

In addition, this altered strain produced 50 percent more ethanol during a 21-hour period than normal yeast.

The prospect of using this approach to engineer similar tolerance traits in industrial yeast could dramatically impact industrial ethanol production, a multi-step process in which yeast plays a crucial role. First, cornstarch or another polymer of glucose is broken down into single sugar (glucose) molecules by enzymes, then yeast ferments the glucose into ethanol and carbon dioxide.

Last year, four billion gallons of ethanol were produced from 1.43 billion bushels of corn grain (including kernels, stalks, leaves, cobs, husks) in the United States, according to the Department of Energy. In comparison, the United States consumed about 140 billion gallons of gasoline.
'"/>

Source:Whitehead Institute for Biomedical Research


Related biology news :

1. Engineered molecule amplifies bodys immune response
2. Engineered skin offers clues to melanoma development
3. Engineered Stem Cells Show Promise For Sneaking Drugs Into The Brain
4. Engineered mouse mimics cognitive aspects of schizophrenia
5. Engineered heart tissue offers insights into irregular heartbeats, defibrillator failure
6. Examination of internal wiring of yeast, worm, and fly reveals conserved circuits
7. Navigating an integrated yeast network
8. After the yeast is gone bacteria continue to develop flavor of sparkling wine
9. GlycoFi announces the first production of antibodies with human glycosylation in yeast
10. From a lowly yeast, researchers divine a clue to human disease
11. GlycoFi and Dartmouth report full humanization of yeast glycosylation pathway in Science

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/6/2017)... 2017  SomaLogic announced today that it has ... by iCarbonX, the China -based ... Digital Health Ecosystem that can define each person,s ... biological, behavioral and psychological data, the Internet and ... SomaLogic will provide proteomics data and applications expertise ...
(Date:1/4/2017)... 2017  CES 2017 – Valencell , the ... announced the launch of two new versions of ... biometric sensor modules that incorporate the best of ... expertise. The two new designs include Benchmark BE2.0, ... and Benchmark BW2.0, a 2-LED version of its ...
(Date:12/22/2016)... SuperCom (NASDAQ:   SPCB ... e-Government, Public Safety, HealthCare, and Finance sectors announced today that Leaders ... to implement and deploy a community-based supportive services program to reduce ... , further expanding its presence in the state. ... This new program, which is expected ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... (PRWEB) , ... January 17, 2017 , ... ... and NetDimensions, a global provider of learning and performance management systems for high-consequence ... mainland China market. , “In the life sciences industry, organizations must pay much ...
(Date:1/16/2017)... ... 2017 , ... Appellate Court of New Jersey approved and ... by India-based Dishman Pharmaceutical & Chemical Ltd. company (DPCL) for its motion to ... Dishman Group’s 100% wholly owned New Jersey-based subsidiary Dishman USA located in New ...
(Date:1/14/2017)... CA (PRWEB) , ... January 14, 2017 , ... ... Proximo™, a new service providing complete end-to-end genome assemblies to researchers around the ... genomes eliminates a major obstacle in answering a wide range of scientific questions. ...
(Date:1/13/2017)... (PRWEB) , ... January 13, 2017 , ... ... market products containing an organic compound called fulvic acid that farms, greenhouses and ... operations that grow cannabis are among the fastest growing segments of customers using ...
Breaking Biology Technology: