Navigation Links
Emerging staph strains found to be increasingly deadly and deceptive

A study of how the immune system reacts to strains of antibiotic-resistant Staphylococcus aureus bacteria--emerging strains that sicken otherwise healthy people, or so-called "community-acquired" infections--has shown for the first time that these strains are more deadly and better at evading human immune defenses than more common S. aureus strains that originate in hospitals and other health-care settings.

In a paper released today online in The Journal of Immunology, scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, describe how community-acquired S. aureus strains that survive treatment with the methicillin family of antibiotics can evade immune defenses. Infections from community-acquired methicillin-resistant S. aureus, or MRSA, are difficult to treat and are increasing nationally at an alarming rate, say experts.

Scientists at NIAID's Rocky Mountain Laboratories (RML) in Hamilton, MT, and colleagues examined the ability of MRSA strains to cause disease in mice and avoid destruction by human white blood cells called neutrophils. Neutrophils, which typically ingest and then kill harmful bacteria, make up about 60 percent of all white blood cells and are the first line of defense against bacteria. Scientists know that community-acquired strains differ from hospital strains, but they don't know why the community strains cause more serious infection in otherwise healthy people.

The work also identified specific S. aureus genes that potentially control the bacterium's escape from neutrophils. Among thousands of S. aureus genes analyzed in the five different strains used in the study, the scientists identified a large group of genes whose role in helping spread infection is unknown. RML's Frank DeLeo, Ph.D., the investigator who directed the study, and colleagues plan to determine if some of the unknown genes help promote disease. If they can learn which genes control t he ability of S. aureus to evade and destroy neutrophils, their work could lead to new medical treatments.

"Each day physicians around the world are stymied by the inability to effectively treat patients suffering from severe S. aureus infections," says NIAID Director Anthony S. Fauci, M.D. "There is a critical need to develop new treatments against late-stage disease caused by antibiotic-resistant strains, and this promising work offers several new approaches."

According to the Centers for Disease Control and Prevention, "recent reports of 'community-acquired' MRSA infections raise concern ?If MRSA becomes the most common form of Staphylococcus aureus in a community, it will make treatment of common infections much more difficult." The April 7, 2005, issue of The New England Journal of Medicine refers in an editorial to "?an epidemic of MRSA in the community."

S. aureus strains acquired in health-care settings can be challenging to resolve because of antibiotic resistance, which limits the choices for treatment. But the situation can become more serious with the newer community-acquired strains, says Dr. DeLeo. "We do not know why cases of community-acquired MRSA infections are increasing, let alone how they flourish," he says. But scientists do know the community strains can cause more severe forms of disease.

Mild S. aureus infections such as impetigo, which typically forms small blisters on the faces of children, or cellulitis, an inflammation of skin or muscle tissue, can easily be treated and usually resolve in a matter of days. But S. aureus disease also can be much more severe and difficult to treat, affecting vital organs and leading to toxins poisoning the blood and infection overwhelming the heart. One of the most severe types of disease is necrotizing pneumonia, where bacteria destroy lung tissue.

"The reason that some mild infections become severe or fatal is not well understood, but virulence is often associated with certain strains," says Jovanka Voyich, Ph.D., of RML, the study's lead author. To cause human disease, bacterial pathogens must avoid being killed by neutrophils. "These results," says Dr. Voyich, "suggest that community-acquired MRSA causes disease in healthy people in part because it has enhanced ability to circumvent killing by neutrophils."


'"/>

Source:NIH/National Institute of Allergy and Infectious Diseases


Related biology news :

1. Ticks, flukes, and genomics: Emerging pathogens revealed
2. Substance protects resilient staph bacteria
3. Study indicates dramatic rise in antibiotic-resistant community-acquired staph infections
4. Less virulent strains of avian influenza can infect humans
5. Study outlines genetic differences between potential pandemic influenza strains
6. Human behavior changes the number of strains of infectious diseases
7. Experimental vaccine protects lab animals against several strains of H5N1
8. Complexity constrains evolution of human brain genes
9. New test for most virulent HPV strains under study
10. New component of the brakes on nerve regeneration found
11. Strongest proof yet found for prion hypothesis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/21/2016)... 21, 2016 NuData Security announced today that ... of principal product architect and that Jon ... customer development. Both will report directly to ... moves reflect NuData,s strategic growth in its product ... customer demand and customer focus values. ...
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/9/2016)... -- Perkotek an innovation leader in attendance control systems is proud to announce the introduction ... to make sure the right employees are actually signing in, and to even control ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... MONICA, Calif. , June 23, 2016  The Prostate Cancer Foundation ... pioneer increasingly precise treatments and faster cures for prostate cancer. Members of the ... institutions across 15 countries. Read More About the Class ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... announced the launch of the Supplyframe Design Lab . Located in Pasadena, ... explore the future of how hardware projects are designed, built and brought to ...
(Date:6/23/2016)... LOUISVILLE, Ky. , June 23, 2016 /PRNewswire/ ... from two Phase 1 clinical trials of its ... double-blind, placebo-controlled, single and multiple ascending dose studies ... and pharmacodynamics (PD) of subcutaneous injection in healthy ... APL-2 subcutaneously (SC) either as a single dose ...
(Date:6/23/2016)... YORK , June 23, 2016 ... trading session at 4,833.32, down 0.22%; the Dow Jones Industrial ... S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), ... Therapeutics Inc. (NASDAQ: BIND ). Learn more about ...
Breaking Biology Technology: