Navigation Links
Embryos exposed in 3-D

A new, transformative filtration-based technology for the isolation and enrichment of cells, a critical first step in the development of therapies to repair or replace diseased or damaged tissues and organs, was found to be more efficient and faster than traditional technology used for cell separation.

These findings were presented today at the International Society for Cellular Therapy (ISCT) annual meeting in Berlin, Germany. The Pall Corporation (NYSE: PLL) Filter Harvest System was found to have the potential to become a valuable tool to help realize the promise of regenerative medicine, a field that scientists believe could produce significant breakthroughs in the treatment of heart disease, cancer, diabetes, bone injury and many other acute and chronic conditions.

Lisa Bradbury, Ph.D., Director, R&D Cell Therapy, Pall Life Sciences, presented data comparing the Pall Filter Harvest System to a traditional open-system, density gradient, centrifuge-based method for isolation of mononuclear cells (MNC) from whole blood. The Pall Filter Harvest System was found to significantly reduce processing time; it can be performed in less than 15 minutes compared to an average processing time of about 2.5 to 4 hours with the Ficoll gradient technique. The Filter Harvest System also exhibited higher yield of MNCs for significantly better recovery (60 to 95 percent) than the Ficoll method.

The Pall Filter Harvest system can be used as a closed system that adheres to Good Manufacturing Practice (cGMP), furthering the ability to comply with increasingly stringent regulations for safe, reproducible and efficacious cell products. In addition to rapid processing, the Pall system can be performed at point of use (operating room). It does not require the addition of laboratory equipment or trained technicians, as the method is easy to learn and use.

"Researchers and companies working in cell therapy expressed the need to find better and easi er ways to isolate and enrich cells that result in higher cell yield, faster processing time, ease of use and are also more likely to meet future regulatory requirements," stated Judy Angelbeck, Ph.D., Senior Vice President, Pall New Technologies. "Pall was able to translate its material science expertise on the interactions between media and cells based on our long-standing leadership in blood filtration to develop this new approach to cell harvesting."

The Pall system can be used to harvest cells from a broad range of biological samples including peripheral blood, bone marrow and umbilical cord blood. The Company is currently working with several companies in applying its filter harvest system to the development of innovative cell-based therapies in a variety of therapeutic areas, including orthopedics.

"We are pleased that Pall technology can play a key role in the revolutionary advances now occurring in medicine by providing researchers with the tools to take novel cell therapies from the laboratory into the clinic, as part of our goal to make cell therapy safe, routine and simple," Dr. Angelbeck added.

Regenerative medicine, which includes cell therapy, is a promising area of scientific research with application in the treatment and cure of a rapidly expanding list of diseases and injuries. Scientists believe cell-based therapies could be used to repair damaged heart muscle following a heart attack, replace skin for burn victims, restore movement after a spinal cord injury and regenerate pancreatic tissue to produce insulin for people with diabetes. Regenerative medicine promises to improve health and quality of life by supporting and activating the body's natural healing abilities.


'"/>

Source:University of Utah


Related biology news :

1. Embryos tell story of Earths earliest animals
2. Penguin chicks exposed to human visitors experience spike in stress hormone
3. Hair samples show babies can be exposed to crystal meth while in the womb
4. Lead-scrubbing drug may also improve muscle function in lead-exposed children
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/2/2017)... Summary This report provides all ... and its partnering interests and activities since 2010. ... The Partnering Deals and Alliance since 2010 report provides ... of the world,s leading life sciences companies. ... ensure inclusion of the most up to date deal ...
(Date:2/28/2017)... -- News solutions for biometrics, bag drop and New ... At ... 16 March, Materna will present its complete end-to-end passenger journey, ... a real benefit for passengers. To accelerate the whole passenger ... point solutions to take passengers through the complete integrated process ...
(Date:2/22/2017)... , Feb. 22, 2017 With ... 2021, ABI Research identifies four technologies that innovative ... to secure significant share in the changing competitive ... and passive authentication.   "Companies can ... comes to security," says Dimitrios Pavlakis , ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... March 23, 2017 , ... ... today announced the hire of Dr. Sigmund “Sig” Floyd as Vice President ? ... partnerships and joint development activities. , “Dr. Floyd’s career has spanned 30 years ...
(Date:3/22/2017)... Good Start Genetics, a leading family genomics ... million covered lives mark through its most recent payor ... . With newly signed contracts nationally and others ... payor acceptance based on the quality of its science, ... its industry-leading customer care and support and its published ...
(Date:3/22/2017)... 22, 2017 /PRNewswire/ - FACIT announced a seed ... "Propellon"), a start-up created by FACIT focused on ... investment, combined with non-dilutive capital, achieves a targeted ... funding enables Propellon to accelerate the nomination of ... financing and/or entering a strategic partnership for clinical ...
(Date:3/22/2017)... ... March 21, 2017 , ... Proper glycosylation is critical ... desired increase and/or decrease in antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity, there is ... antibodies. , To meet this demand, the team at SCIEX has developed ...
Breaking Biology Technology: