Navigation Links
Einstein researchers take the pulse of a gene in living cells

Scientists at the Albert Einstein College of Medicine of Yeshiva University have observed for the first time that gene expression can occur in the form of discrete "pulses" of gene activity. The researchers used pioneering microscopy techniques, developed by Dr. Robert Singer and colleagues at Einstein, that for the first time allow scientists to directly watch the behavior of a single gene in real time. Their findings appeared in the current issue of Current Biology.

When a gene is expressed or "turned on," genetic information is transferred from DNA into RNA. This process, known as transcription, is crucial for translating the gene's message into a functional protein. Diseases such as cancer can result when genes turn on at the improper time or in the wrong part of the body.

Researchers customarily use microarrays (also known as "gene chips") to assess gene expression in tumors and other tissues. But with millions of cells involved, microarrays reflect only "average" gene expression. Just how a gene is transcribed in a single cell--continuously, intermittently or some other way--has largely been a mystery.

Now, in observing a gene that plays a major role in how an organism develops, the Einstein researchers observed a phenomenon that until now has been indirectly observed and only in bacteria: pulses of transcription that turn on and off at irregular intervals. Dr. Singer and his co-workers used a fluorescent marker that sticks to the gene only when it is active. Under a microscope, this fluorescent marker appears when the gene turns on, then disappears (gene "off") and then appears again (gene "on").

The focus of the study was a gene important in the life cycle of the social amoeba Dictyostelium, thousands of which sometimes aggregate into a single slug-like mass. This developmental gene plays a major role in transforming the "slug" into a stalk-like structure called a fruiting body, which releases new amoebae.

"The pulsin g we observed in this gene would allow it to very precisely regulate development," says Dr. Singer, the study's senior author and professor and co-chair of the Department of Anatomy & Structural Biology at Einstein. He likens a gene to a thermostat:

"Heating a home all the time would be wasteful and would overheat the house," he says. "The solution is a thermostat, which injects a little bit of heat when needed and then turns off. Similarly, a cell needs the gene to be turned on--but too much activity at the wrong time can be a problem, so the solution is to have small bursts of activity."

Still to be discovered, says Dr. Singer, is how the pulsing mechanism itself is controlled. In addition, these findings pertain to developmental genes, which are turned on selectively and only in certain tissues. "Other genes--so-called constitutive genes--are regularly expressed by all the cells of an organism," Dr. Singer notes. "We'd like to find out whether these genes pulse as well."

Also involved in this study were Jonathan R. Chubb (now at University of Dundee in the U.K.), Tatjana Trcek and Shailesh M. Shenoy.


'"/>

Source:Albert Einstein College of Medicine


Related biology news :

1. Einstein researchers identify new way that bacteria develop resistance to antibiotics
2. Einstein scientists discover how protein crucial for motion is synthesised at the right place in the cell
3. Study by Einstein researchers could lead to a novel strategy for treating obesity
4. Einstein researchers demonstrate a novel approach to treating AIDS
5. Einsteins tea leaves inspire new blood separation technique
6. NYU researchers simulate molecular biological clock
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
11. New protein discovered by Hebrew University researchers
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/20/2016)... Calif. , Jan. 20, 2016  Synaptics ... of human interface solutions, today announced sampling of ... solution for wearables and small screen applications including ... as printers. Supporting round and rectangular shapes, as ... offers excellent performance with moisture on screen, while ...
(Date:1/13/2016)... , January 13, 2016 ... published a new market report titled - Biometric Sensors Market ... Forecast, 2015 - 2023. According to the report, the global biometric ... is anticipated to reach US$1,625.8 mn by 2023, expanding ... In terms of volume, the biometric sensors market is ...
(Date:1/11/2016)...  higi, the leading retail and omni-channel community engagement ... and mobile, today announced it has closed funding ... --> --> ... higi,s health platform – its network of health ... expanding services and programs to retail partners and ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... , Germany and ... QGEN ; Frankfurt Prime Standard: QIA) today ... Targeted RNA Panels for gene expression profiling, expanding QIAGEN,s ... (NGS). The panels enable researchers to select from over ... changes and discover interactions between genes, cellular phenotypes and ...
(Date:2/11/2016)... Feb. 11, 2016  Dovetail Genomics™ LLC today announced ... program for a planned metagenomic genome assembly service. ... metagenomic genome assembly method in a talk on Friday, ... & Technology conference in Orlando, Fla. ... complex datasets is difficult. Using its proprietary ...
(Date:2/11/2016)... ... February 11, 2016 , ... Global Stem Cells Group, ... Quito, Ecuador. The new facility will provide advanced protocols and state-of-the-art techniques in ... world. , The new GSCG clinic is headed by four prominent Ecuadorian ...
(Date:2/10/2016)... Feb.10, 2016 ASAE is introducing a hybrid ... Companies (AMC) the option of joining or renewing through ... determined by staff size, every employee in any size ... and reap all available member benefits.   ... organizational membership options will allow organizations of any size ...
Breaking Biology Technology: