Navigation Links
Einstein researchers identify new way that bacteria develop resistance to antibiotics

Scientists at the Albert Einstein College of Medicine have discovered a novel strategy by which the bacterium that causes tuberculosis may soon be able to resist the effects of antibiotics known as fluoroquinolones. The finding explains why several disease-causing microbes, including Shigella and E. coli, are rapidly becoming resistant to fluoroquinolones.

The international research effort was led by Dr. John S. Blanchard, the Dan Danciger Professor of Biochemistry at the Albert Einstein College of Medicine. The findings are published in the June 3 issue of Science.

Fluoroquinolones, an important class of antibiotics that includes ciprofloxacin (Cipro), work against TB by interfering with the microbe's ability to reproduce itself. Specifically, the drugs target an enzyme called DNA gyrase, which helps untwist bacterial DNA during replication. However, TB has been developing resistance to fluoroquinolones due to their increasing use in treating multi-drug-resistant TB infections.

Until recently, this resistance was due entirely to mutations in DNA gyrase that prevent fluoroquinolones from binding to the complex formed by the enzyme and DNA. Now, the Science article has identified a new strategy by which TB bacteria may be able to resist fluoroquinolones--and that other microbes are already using.

After studying the three-dimensional structure of a TB protein called MfpA, the researchers found that the protein contains a fold that mimics DNA. So rather than binding with DNA--and becoming a target for the fluoroquinolones--DNA gyrase instead binds with the DNA "mimic" MfpA, rendering the fluoroquinolones ineffective. Proteins similar to MfpA are also present in Shigella, E. coli and other disease-causing bacteria that have developed fluoroquinolone resistance.

"Our study shows that this novel bacterial mechanism is responsible for the rapid spread of fluoroquinolone resistance that is making hospital-acquired infections so difficu lt to treat," says Dr. Blanchard.

Additional members of the research team were postdoctoral fellows Subray S. Hegde and Matthew W. Vetting, and Dr. Steven L. Roderick (Albert Einstein College of Medicine in Bronx, NY); Dr. Anthony Maxwell (The John Innes Centre in Norwich, England); and Dr. Howard E. Takiff (Instituto Venezolano de Investigaciones Cientificas in Caracas, Venezuela).


'"/>

Source:Albert Einstein College of Medicine


Related biology news :

1. Einstein scientists discover how protein crucial for motion is synthesised at the right place in the cell
2. Study by Einstein researchers could lead to a novel strategy for treating obesity
3. Einstein researchers take the pulse of a gene in living cells
4. Einstein researchers demonstrate a novel approach to treating AIDS
5. Einsteins tea leaves inspire new blood separation technique
6. NYU researchers simulate molecular biological clock
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
11. New protein discovered by Hebrew University researchers
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/28/2016)... SAN FRANCISCO and BANGALORE, India ... part of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... service provider, today announced a global partnership that ... convenient way to use mobile banking and payment services. ... Mobility is a key innovation area for financial services, but ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... implemented as a compact web-based "all-in-one" system solution for ... biometric fingerprint reader or the door interface with integration ... modern access control systems. The minimal dimensions of the ... readers into the building installations offer considerable freedom of ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... NEW YORK , June 23, 2016 ... the trading session at 4,833.32, down 0.22%; the Dow Jones ... the S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ... BIND Therapeutics Inc. (NASDAQ: BIND ). Learn more ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC machining ... Chicago. The result of a collaboration among several companies with expertise in toolholding, ...
(Date:6/22/2016)... , June 22, 2016 Cell Applications, ... allow them to produce up to one billion ... lot within one week. These high-quality, consistent stem ... preparing cells and spend more time doing meaningful, ... a proprietary, high-volume manufacturing process that produces affordable, ...
Breaking Biology Technology: