Navigation Links
Einstein researchers identify new way that bacteria develop resistance to antibiotics

Scientists at the Albert Einstein College of Medicine have discovered a novel strategy by which the bacterium that causes tuberculosis may soon be able to resist the effects of antibiotics known as fluoroquinolones. The finding explains why several disease-causing microbes, including Shigella and E. coli, are rapidly becoming resistant to fluoroquinolones.

The international research effort was led by Dr. John S. Blanchard, the Dan Danciger Professor of Biochemistry at the Albert Einstein College of Medicine. The findings are published in the June 3 issue of Science.

Fluoroquinolones, an important class of antibiotics that includes ciprofloxacin (Cipro), work against TB by interfering with the microbe's ability to reproduce itself. Specifically, the drugs target an enzyme called DNA gyrase, which helps untwist bacterial DNA during replication. However, TB has been developing resistance to fluoroquinolones due to their increasing use in treating multi-drug-resistant TB infections.

Until recently, this resistance was due entirely to mutations in DNA gyrase that prevent fluoroquinolones from binding to the complex formed by the enzyme and DNA. Now, the Science article has identified a new strategy by which TB bacteria may be able to resist fluoroquinolones--and that other microbes are already using.

After studying the three-dimensional structure of a TB protein called MfpA, the researchers found that the protein contains a fold that mimics DNA. So rather than binding with DNA--and becoming a target for the fluoroquinolones--DNA gyrase instead binds with the DNA "mimic" MfpA, rendering the fluoroquinolones ineffective. Proteins similar to MfpA are also present in Shigella, E. coli and other disease-causing bacteria that have developed fluoroquinolone resistance.

"Our study shows that this novel bacterial mechanism is responsible for the rapid spread of fluoroquinolone resistance that is making hospital-acquired infections so difficu lt to treat," says Dr. Blanchard.

Additional members of the research team were postdoctoral fellows Subray S. Hegde and Matthew W. Vetting, and Dr. Steven L. Roderick (Albert Einstein College of Medicine in Bronx, NY); Dr. Anthony Maxwell (The John Innes Centre in Norwich, England); and Dr. Howard E. Takiff (Instituto Venezolano de Investigaciones Cientificas in Caracas, Venezuela).


'"/>

Source:Albert Einstein College of Medicine


Related biology news :

1. Einstein scientists discover how protein crucial for motion is synthesised at the right place in the cell
2. Study by Einstein researchers could lead to a novel strategy for treating obesity
3. Einstein researchers take the pulse of a gene in living cells
4. Einstein researchers demonstrate a novel approach to treating AIDS
5. Einsteins tea leaves inspire new blood separation technique
6. NYU researchers simulate molecular biological clock
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
11. New protein discovered by Hebrew University researchers
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... to grow at a CAGR of 30.37% during the period 2017-2021. ... been prepared based on an in-depth market analysis with inputs from ... prospects over the coming years. The report also includes a discussion ...
(Date:4/6/2017)... , April 6, 2017 Forecasts ... ANPR, Document Readers, by End-Use (Transportation & Logistics, Government ... Oil, Gas & Fossil Generation Facility, Nuclear Power), Industrial, ... Other) Are you looking for a definitive ... ...
Breaking Biology News(10 mins):
(Date:4/28/2017)... (PRWEB) , ... April 28, 2017 , ... Cynvenio ... the launch of a new neoadjuvant breast cancer monitoring (NEAT) study in partnership with ... 10 centers and over 150 patients to be monitored over two years with Cynvenio’s ...
(Date:4/27/2017)... ... 27, 2017 , ... Proscia Inc., a ... technology has the potential to eliminate subjectivity in the detection and classification of ... part of the 2017 ISBI CAMELYON Digital Pathology Challenge, organized by ...
(Date:4/27/2017)... , ... April 27, 2017 , ... ... explaining why mass flow controllers based on capillary thermal mass flow technology provide ... mass flow control applications. Over 80% of all industrial processes—such as those ...
(Date:4/27/2017)... , April 27, 2017  Kinexum, a distinguished resource ... today announces the appointment of Thomas C. Seoh ... ("Zan") Fleming, M.D., Kinexum founder, who becomes Executive Chairman ... to Kinexum clients. Thomas Seoh ... the Kinexum mission and lead the firm,s remarkable team ...
Breaking Biology Technology: