Navigation Links
Dopamine used to prompt nerve tissue to regrow

When Yadong Wang, a chemist by training, first ventured into nerve regeneration two years ago, he didn't know that his peers would have considered him crazy.

His idea was simple: Because neural circuits use electrical signals often conducted by neurotransmitters (chemical messengers) to communicate between the brain and the rest of the body, he could build neurotransmitters into the material used to repair a broken circuit. The neurotransmitters could coax the neurons in the damaged nerves to regrow and reconnect with their target organ.

Strange though his idea might have seemed to others in his field, Wang, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, discovered that he could integrate dopamine, a type of neurotransmitter, into a polymer to stimulate nerve tissues to send out new connections. The discovery is the first step toward the eventual goal of implanting the new polymer into patients suffering from neurological disorders to help repair damaged nerves. The findings were published online the week of Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS).

"We showed that you could use a neurotransmitter as a building block of a polymer," said Wang. "Once integrated into the polymer, the transmitter can still elicit a specific response from nerve tissues."

The "designer" polymer was recognized by the neurons when used on a small piece of nerve tissue and stimulated extensive neural growth. The implanted polymer didn't cause any tissue scarring or nerve degeneration, allowing the nerve to grow in a hostile environment post injury.

When ready for clinical use, the polymer would be implanted at the damaged site to promote nerve regeneration. As the nerve tissue reforms, the polymer degrades.

Wang's team found that dopamine's structure, which contains two hydroxyl groups, is vital for the material's neuroactivity. Removing even one group caused a complete loss of the biological activity. They also determined that dopamine was more effective at differentiating nerve cells than the two most popular materials for culturing nerves -- polylysine and laminin. This ability means that the material with dopamine may have a better chance to successfully repair damaged nerves.

The success of dopamine has encouraged the team to set its sights on other neurotransmitters.

"Dopamine was a good starting point, but we are looking into other neurotransmitters as well," Wang said.

The team's next step is to verify findings that the material stimulates the reformation of synapses in addition to regrowth.

"A successful nerve regeneration will require the nerve to synapse with the target organ," Wang said. "Since we've written this paper, we've also been able to get the nerves to form extensive synapses, which is a step in the right direction."
'"/>

Source:Georgia Institute of Technology


Related biology news :

1. Discovery of New Dopamine Action May Yield Alternative Psychiatric Drugs
2. Dopamine drug leads to new neurons and recovery of function in rat model of Parkinsons
3. Plants defy Mendels inheritance laws, may prompt textbook changes
4. PET/CT can identify new cancer lesions at early stage, allowing for prompt treatment
5. Plant defenses prompt bacterial countermeasure in the form of island DNA excision
6. Just like us, social stress prompts hamsters to overeat, gain weight
7. Renewed dolphin slaughter prompts new campaign
8. Malaria vaccine prompts victims immune system to eliminate parasite from mosquitoes
9. Wisconsin scientists grow critical nerve cells
10. Clam embryo study shows pollutant mixture adversely affects nerve cell development
11. Zebrafish may hold key to understanding human nerve cell development

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/4/2016)... , Feb. 4, 2016 The ... apparently one of the most popular hubs of ... MetaHIT and other huge studies of human microbiota, ... past few years, the microbiome space has literally ... biomedical research. This report focuses on biomedical ...
(Date:2/2/2016)... , Feb. 2, 2016  BioMEMS devices ... primarily focused on medical screening and diagnostic ... parameters. Wearable devices that facilitate and assure ... of movement are being bolstered through new ... biomedical signal acquisition coupled with wireless connectivity ...
(Date:2/2/2016)... MOUNTAIN VIEW, Calif. , Feb. 2, 2016 ... diabetic retinopathy market, Frost & Sullivan recognizes US-based ... North America Frost & Sullivan Award for New ... technology provider in North America ... standard in the rapidly growing diabetic retinopathy market. ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... ... February 09, 2016 , ... With a presidential election in November and the ... will bring together over 500 top healthcare leaders for a night and day of ... organized by MBA students of the University of Pennsylvania’s Wharton School, will be held ...
(Date:2/9/2016)... PA (PRWEB) , ... February 09, 2016 , ... Tunnell ... Europe. Based in Paris, he will focus on acquiring new accounts and work ... met. , “Fred brings to our European clients more than 15 ...
(Date:2/9/2016)... This market research report on the global ... of the market in terms of revenue (USD Million). ... the manufacture of microbiology culture media and related products. ... snapshot providing the overall information of various market segments ... also provides the overall information and data analysis of ...
(Date:2/8/2016)... , Feb. 8, 2016 /PRNewswire/ - BIOREM Inc. (TSXV: ... the top ten finalists for clean technology companies in the ... the top 10 companies listed on the TSX Venture Exchange, ... & gas, clean technology & life sciences, diversified ... equal weighting given to return on investment, market cap growth, ...
Breaking Biology Technology: