Navigation Links
Doing a spin with DNA

A Dutch led international team of researchers has unravelled how nature releases the torque built up in DNA at the molecular level. The researchers from Delft University of Technology, the Ecole Normale Supérieure in Paris and the Sloan-Kettering institute in New York published their findings in the 31 March 2005 issue of Nature. An artistic impression of the enzyme at work is featured on the cover of this issue.

The enzyme topoisomerase IB releases the torsion built up in DNA strands. During their investigations, the researchers could follow a single topoisomerase-enzyme molecule over time as it acted on a single DNA molecule. The topoisomerase clamps onto the DNA, cuts through one of the two DNA strands, and then lets the DNA unwind before sticking the broken ends back together again. With the help of sensitive measuring devices, the researchers could measure various parameters such as the friction of the rotating DNA in a cavity of the enzyme. The research has provided new insights into the interactions between DNA and the enzyme, which are of fundamental importance for understanding cell division.

DNA consists of two long strands joined together by pairs of bases. Both strands wind around each other in the form of a double helix with the base pairs acting as the 'stairs' in a staircase. The sequence of these base pairs stores genetic information. During cell division genetic material is copied and the enzymes responsible for this must be able to transcribe the base sequences. This is only possible if the portion of DNA to be transcribed is unwound. This winding and unwinding of the DNA gives rise to torsional forces in the DNA, the magnitude of which increases as cell division progresses. These forces can delay the process of cell division and under certain conditions even stop it. Topoisomerase IB can reduce these torsional forces.

The enzyme releases the torsion from the DNA as follows: The enzyme surrounds the double-stranded DNA like a clamp and then temporarily cuts through one of the two DNA strands. The accumulated torsional forces in the DNA are then spun out around the intact strand. After a number of turns the topoisomerase ones again firmly grabs the spinning DNA and 'glues' (ligates) the broken stands neatly back together again. The researchers were able to determine the exact number of turns removed by the topisomerase between 'cutting' and 'gluing'.

The precise mechanism of topoisomerase IB is also important for cancer research. Drugs which inhibit the functioning of topoisomerase IB are already in clinical use, but can possibly be improved using the knowledge from this study.


Source:Netherlands Organization for Scientific Research

Related biology news :

1. Infants With Rare Genetic Disease Saved by Cord Blood Stem Cells
2. Antiretroviral Therapy May Prevent HIV Transmission From Breastfeeding Mothers To Infants
3. Infants can organise visual information at just four months
4. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
5. Genetically modified natural killer immune cells attack, kill leukemia cells
6. Ants Genetic Engineering Leads To Species Interdependency
7. Genetic Variation Visualization - From EMBL
8. Genetically modified rice in China benefits farmers health, study finds
9. Genetically Modified Natural Killer Immune Cells Attack, Kill Leukemia Cells
10. Genetic defects give the immune system the green light to attack the pancreas
11. Maine Researchers Find Exceptions to Old Rules of Genetic Inheritance
Post Your Comments:

(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
(Date:10/29/2015)... 29, 2015  The J. Craig Venter Institute (JCVI) ... Synthesis and Biosecurity: Lessons Learned and Options for the ... and Human Services guidance for synthetic biology providers has ... --> --> Synthetic biology ... potential to pose unique biosecurity threats. It now is ...
(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... the explosion of technology-enabled health and wellness, and the ... book, The Internet of Healthy Things ... or smartphones even existed, Dr. Kvedar, vice president, Connected ... health care delivery, moving care from the hospital or ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... , Nov. 25, 2015 Orexigen® Therapeutics, Inc. ... participate in a fireside chat discussion at the Piper ... York . The discussion is scheduled for Wednesday, ... .  A replay will be available for ... Stilwell  , Julie NormartVP, Corporate Communications and Business ...
(Date:11/25/2015)... CA (PRWEB) , ... November 25, 2015 , ... ... genomics company uBiome, were featured on AngelList early in their initial angel funding ... an AngelList syndicate for individuals looking to make early stage investments in the ...
(Date:11/24/2015)... ... 2015 , ... The United States Golf Association (USGA) today announced Dr. Bruce ... Presented annually since 1961, the USGA Green Section Award recognizes an individual’s distinguished service ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology in the ...
(Date:11/24/2015)... , Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: ... Conference in New York on Wednesday, December ... Helen Torley , president and CEO, will provide a corporate overview. ... New York at 1:00 p.m. ET/10:00 a.m. PT . ... investor relations, will provide a corporate overview. --> th ...
Breaking Biology Technology: