Navigation Links
Distinguishing friend from foe in the battle against cancer

The latest generation of cancer chemotherapeutic drugs specifically targets mutant enzymes or "oncoproteins" that have run amok and now promote uncontrolled cell growth. As promising as these drugs are, cancer cells with their backs against the wall have the tendency to fight back. A major goal of cancer research is to frustrate these acts of cellular desperation.

In a forthcoming issue of Cancer Cell, investigators at the Salk Institute for Biological Studies uncover one means cancer cells use to stay alive and in doing so suggest a strategy to overcome their recalcitrance. The study, led by Tony Hunter, Ph.D., in collaboration with Inder Verma, Ph.D., shows that resistance to the chemotherapeutic drug rapamycin is mediated by the survival factor NF-kB.

Rapamycin, like the pharmaceutical superstar Gleevec, which revolutionized the treatment of chronic myelogenous leukemia, is a so-called signal transduction inhibitor or STI, a small molecule that stifles inappropriate growth signals sent by mutant proteins in cancer cells. STIs may look like overnight successes, but they are actually the result of decades of hard work.

"We have been working for 35 years looking at mechanisms underlying formation of cancer cells," says Hunter, an American Cancer Society professor in the Molecular and Cell Biology Laboratory. "We've made huge progress identifying specific events that change normal proteins into proteins that cause cancer and developing drugs that target those proteins. This work provides another potential direct target for development of cancer drugs."

The Hunter lab previously showed that mouse cells lacking tumor suppressors known as TSC genes are more susceptible to the lethal effects of chemotherapeutic agents than are normal cells. Why cells from these TSC null mice were so poorly equipped to survive was not entirely clear.

Co-lead authors Sourav Ghosh, Ph.D., and Vinay Tergaonkar, Ph.D., postdoctoral fellows in the respe ctive Hunter and Verma labs moved those mouse studies to the next level by tinkering with TSC activity in human cancer cells. Says Ghosh, "We were able to extend this model based on TSC null cells to different human cancer cell lines, where we knocked down TSC expression and showed that the same pattern held true."

Specifically, the team found that human cells lacking TSC genes were vulnerable to chemotherapeutic attack because they couldn't activate a major line of defense mediated by the Nuclear Factor kappa B, known as NF-kB, which triggers both inflammatory and survival responses by inducing transcription of specific genes.

Not only did this explain why TSC null cells are vulnerable to insult, but it also provided biochemical evidence that there is crosstalk between two survival mechanisms. Explains Tergaonkar, who is now an assistant professor at the Institute for Molecular and Cell Biology (IMCB) in Singapore, "Our findings show for the first time that the TSC complex can regulate the NF-kB signaling cascade."

The experiments also explained a paradox: TSC null cells treated with rapamycin actually survived cellular insult better than untreated cells-a highly inauspicious outcome if the goal is to kill cancer cells. The Hunter and Verma team found that rapamycin did that by increasing NF-kB activity in the TSC null cells when they were exposed to chemotherapeutic drugs.

Rapamycin, an immunosuppressant used to block organ rejection after transplants, also inactivates proteins stimulating cell division and in clinical trials has been combined with other drugs to halt cancer cell growth.

But to cancer cells, rapamycin is both friend and foe. "Rapamycin is not as successful as initially expected in treating cancer," explains Ghosh. "Instead of killing cells, you end up triggering a survival response in them." This study, however, suggests that taking NF-kB out of the game would make rapamycin less "friendly."

"A maj or problem of chemotherapy is that sooner or later cancer cells develop resistance, which requires higher and higher doses of chemotherapeutics," observes Verma, who is also an American Cancer Society professor in Salk's Laboratory of Genetics. "Rapamycin-mediated killing of cancer cells could be increased by inhibiting the function of NF-kB proteins. Our studies provide the basis for arriving at this very important conclusion, which has enormous bearing on cancer treatment."

Tergaonkar concurs. "Our studies suggest the potential use of NF-kB signaling inhibitors as adjuvants to maximize the effect of rapamycin-based therapeutics. These findings will have a significant impact on human health."


'"/>

Source:Salk Institute


Related biology news :

1. W.M. Keck Foundation funds study of friendly microbes
2. Plants respond similarly to signals from friends, enemies
3. Grass makes environmentally friendly biofuel
4. Plant pathologists evaluate eco-friendly alternatives to methyl bromide
5. FDA approves child-friendly AIDS medicine
6. Mans best friend: Study shows lonely seniors prefer playtime with pooch over human interaction
7. Eco-friendly bug sucker
8. Surprising symbiosis: Glassy-winged sharpshooter eats with friends
9. Train your brain to hear your friends at a party
10. Mans best friend lends insight into human evolution
11. UN environmental agency steps up battle against marine pollution
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at VivaTech ... startups and global businesses, taking place in Paris ... will showcase the solutions they have built with IBM Watson ... France is one of the most dynamic ... in the number of startups created between 2012 and 2015*, ...
(Date:5/16/2017)... , May 16, 2017  Veratad Technologies, LLC ( ... online age and identity verification solutions, announced today they ... Conference 2017, May 15 thru May 17, 2017, in ... and International Trade Center. Identity impacts ... and in today,s quickly evolving digital world, defining identity ...
(Date:5/6/2017)... SINGAPORE , May 5, 2017 ... has just announced a new breakthrough in biometric ... that exploits quantum mechanical properties to perform ... new smart semiconductor material created by Ram Group ... across finance, entertainment, transportation, supply chains and security. ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a United States multicenter, prospective clinical study that demonstrates the accuracy ... test capable of identifying clinically significant acute bacterial and viral respiratory tract ...
(Date:10/11/2017)... CA (PRWEB) , ... October 11, 2017 , ... ... upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding the ... system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... HILLS, Calif. , Oct. 11, 2017  SkylineDx today ... (ICR) and University of Leeds ... risk-stratify patients with multiple myeloma (MM), in a multi-centric Phase ... University of Leeds is the sponsor ... and ICR will perform the testing services to include high-risk ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights ... (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital ...
Breaking Biology Technology: