Navigation Links
Discovery that bacterium is phosphate gourmet key clue to what makes it most social of bacteria

New research into one of the world's most social bacteria - Myxococcus xanthus, has discovered that it has a gourmet style approach to its consumption of phosphates, which provides a key clue to what makes it the most "social" of bacteria.

Myxococcus xanthus is amazingly social and co-operative for a bacterium. It "hunts" as a pack, it makes a collective decision with other M. xanthus whether to go dormant or not, and it even has methods of policing the behaviour of individual bacteria that to try to "cheat" in the collective activity of the group. Now Dr David Whitworth from the Biological Sciences Department of the University of Warwick has also discovered that it appears to seek out and consume phosphate in a "gourmet" manner, providing important evidence as to how such a relatively simple organism is able to act in such a social manner.

Dr Whitworth looked at the signalling pathways used by the bacterium to process information to switch actions on or off. Myxococcus xanthus has an unprecedented number (around 150) of the signalling pathways known as "two component switches" which dramatically increases the level of complexity of information that can be processed by the bacterium. Dr Whitworth focussed on three previously described signalling pathways that were known to be similar to phosphate utilisation pathways (all organisms needs to consume phosphate to thrive). Until now most researchers believed that all bacteria only required one phosphate dependent signalling pathway to find the phosphate needed for consumption, and so the other two pathways found in M. xanthus simply did something else. In collaboration with Prof Mitchell Singer of the University of California at Davis, Dr Whitworth found that in fact the bacterium was using all three pathways and part of a further fourth pathway in combination, to detect and utilise phosphates, making it a very sophisticated consumer of phosphates - the bacterial equivalent of a gourmet diner.

T hat the 3 pathways act in concert probably enables the organism to find phosphates in different chemical states or environmental conditions, or even to exploit the phosphates found in other M. xanthus cells or those of potential prey organisms. Dr Whitworth found that:

The potential complexity of the information on phosphate levels the bacterium can process is significantly increased by the findings that there are three phosphate signalling pathways, with considerable interaction between the three pathways.

A further additional partial pathway also acts as a phosphate level detector - giving the bacterium even more tools to employ as a phosphate gourmet.

Dr Whitworth also has evidence that the surprising extent of interaction between the three and a half phosphate signalling pathways is also found among the other 140 plus signalling pathways of the bacterium. If three and half pathways are enough to make it a phosphate gourmet, the level of interactions between up to 150 pathways will easily be enough to give Myxococcus xanthus its precocious social skills.


'"/>

Source:University of Warwick


Related biology news :

1. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
2. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
3. UCSD Discovery Shows How Embryonic Stem Cells Perform Quality Control Inspections
4. Discovery Could Lead To Novel Approaches In HIV Treatment
5. Discovery Promises Simpler Therapy for Sickle Cell Disease
6. Discovery may lead to better Candidiasis drug
7. Protein Discovery Could Unlock The Secret To Better TB Treatment
8. Discovery clarifies role of peptide in biological clock
9. Eliminate Data Analysis Bottlenecks in Drug Discovery
10. Discovery of New Dopamine Action May Yield Alternative Psychiatric Drugs
11. Discovery could be key to bioterrorism defense
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
(Date:4/24/2017)... 2017 Janice Kephart , former ... Strategy Partners, LLP (IdSP) , today issues the ... Trump,s March 6, 2017 Executive Order: Protecting ... can be instilled with greater confidence, enabling the ... refugee applications are suspended by until at least ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... Sciences today announced the three Winners and six Finalists of the 2017 Blavatnik ... annually by the Blavatnik Family Foundation and administered by the New York Academy ...
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed for ... complexity. Named in honor of pioneering researcher Rosalind Franklin, who made a ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ., ... a Webinar titled, “Pathology is going digital. Is your lab ready?” with Dr. ... best practices and how Proscia improves lab economics and realizes an increase in ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today ... designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) ... able to cross the cell membrane and bind intracellular STAT3 and inhibit its ...
Breaking Biology Technology: