Navigation Links
Discovery of key protein's shape could lead to improved bacterial pneumonia vaccine

Scientists at St. Jude Children's Research Hospital have discovered that the shape of a protein on the surface of pneumonia bacteria helps these germs invade the human bloodstream. This finding, published Dec. 16 online by the EMBO Journal, could help scientists develop a vaccine that is significantly more effective at protecting children against the disease. The St. Jude researchers determined the shape of a large, paddle-like molecule that Streptococcus pneumoniae bacteria use to latch onto cells lining the throat and lungs. The protein, called CbpA, binds to a molecule on the cell called pIgR, which takes antibodies from the bloodstream on one side of the cell and transports them to the other side. There it releases the antibody at the lining of the throat and lungs. If a pneumococcus bacterium is hovering on the lining of the respiratory tract, this germ binds to pIgR and pushes this antibody shuttle back through the cell to the bloodstream. Once at the other side of the cell, the pneumococcus breaks free of pIgR and enters the blood, where it can multiply and infect the body.

S. pneumoniae is the only bacterium known to use CbpA to invade human cells by binding to pIgR, according to Richard W. Kriwacki, Ph.D., associate member of St. Jude Structural Biology. Kriwacki is senior author of the EMBO Journal report. “The fact that we now know the structure of this important protein means we can begin to develop a vaccine that is more effective in children than those that are currently available,?Kriwacki said. Elaine Tuomanen, M.D., chair of Infectious Diseases and director of the Children’s Infection Defense Center at St. Jude, is co-author of the EMBO Journal paper. “Using CbpA as the key part of a new vaccine against S. pneumoniae would solve a problem that now hinders our ability to protect children from this infection,?Tuomanen said. Current pneumonia vaccines designed to protect adults against more than two dozen strains of S. pneumoniae do not work in young children. Adult vaccines are composed of pieces of carbohydrates naturally appearing on the surface of these bacteria. When used in a vaccine, these pieces of carbohydrate stimulate the immune system to make antibodies against the real carbohydrate targets on the bacteria. The problem with such vaccines is that the immune systems of very young children (younger than two years) do not naturally respond to carbohydrates. Pneumococcus vaccines for children must instead be modified by binding those carbohydrates to special proteins that stimulate the immune systems of young children. “However such vaccines are so complex that they can carry carbohydrate targets for only a few specific strains of pneumonia bacteria,?Tuomanen said. “So children are always under-protected, since there are so many different strains of these bacteria.?Knowing the shape of CbpA will guide researchers in their efforts to use part or all of this protein as the basis of a vaccine against S. pneumoniae. “CbpA is a very large protein,?Tuomanen said. “Now that we know what it looks like and how it’s put together, we can pull it apart to see if smaller pieces of it can be used to make a vaccine that triggers production of antibodies against the CbpA. Since all the S. pneumoniae strains need CbpA to invade the bloodstream, we can widen the protection of a vaccine to all 90 types of pneumococcus by just adding CbpA, or a piece of CbpA.?The discovery of the structure of CbpA was a two-step process that included studies of how this protein works, followed by determination of its actual structure using powerful laboratory tools. Previous work by another team suggested that CbpA binds to pIgR. However, that finding was made in “test-tube?experiments without using actual bacteria. So the St. Jude team developed pneumococcus bacteria that had mutated CbpA in order to prove that live bacteria with mutated CbpA could not bind to pIgR on cells. “Our work confirmed that the pneumococcus uses CbpA to bind to human cells,?said Beth Mann, a research laboratory specialist in Tuomanen’s lab who developed the bacteria carrying mutated CbpA. Mann, co-author of the paper, also showed that the long, paddle-shaped extensions of the protein must be folded in a specific way in order for CbpA to work. The discovery of the actual shape of CbpA was made using nuclear magnetic resonance (NMR) spectroscopy and circular dishroism (CD). NMR combines radio wave emissions and a powerful magnetic field to determine the structure of proteins suspended in solutions, while CD measures differences in the absorption of different types of polarized light by molecules to determine their shape. It also can show how that shape can change when the protein interacts with another molecule. “This work required that we develop new NMR methods in order to determine the shape of this protein, which undergoes changes as it interacts with pIgR,?said Rensheng Luo, Ph.D., a post-doctoral fellow in St. Jude Structural Biology and Infectious Diseases and first author of the paper.
'"/>

Source:St. Jude Children's Research Hospital


Related biology news :

1. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
2. UCSD Discovery Shows How Embryonic Stem Cells Perform Quality Control Inspections
3. Discovery Could Lead To Novel Approaches In HIV Treatment
4. Discovery Promises Simpler Therapy for Sickle Cell Disease
5. Discovery may lead to better Candidiasis drug
6. Protein Discovery Could Unlock The Secret To Better TB Treatment
7. Discovery clarifies role of peptide in biological clock
8. Eliminate Data Analysis Bottlenecks in Drug Discovery
9. Discovery of New Dopamine Action May Yield Alternative Psychiatric Drugs
10. Discovery could be key to bioterrorism defense
11. Discovery of an American salamander where it shouldnt be: Korea

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
(Date:3/31/2016)... R.I. , March 31, 2016  Genomics firm ... of founding CEO, Barrett Bready , M.D., who ... members of the original technical leadership team, including Chief ... President of Product Development, Steve Nurnberg and Vice President ... returned to the company. Dr. Bready served ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory ... technical consulting, provides a free webinar on Performing Quality Investigations: Getting ... at 12pm CT at no charge. , Incomplete investigations are still a major ...
(Date:6/23/2016)... -- Amgen (NASDAQ: AMGN ) today announced a ... sciences incubator to accelerate the development of new therapies ... QB3@953 was created to help high-potential life science and ... stage organizations - access to laboratory infrastructure. ... "Amgen Golden Ticket" awards, providing each winner with one ...
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
(Date:6/22/2016)... YORK , June 22, 2016  According ... growing next generation sequencing (NGS) market include significant ... of smaller sequencers.  More accessible and affordable sequencers, ... to growing demand for consumables including sample prep ... The Market for Sample Preparation for Next Generation ...
Breaking Biology Technology: