Navigation Links
Discovery of agile molecular motors could aid in treating motor neuron diseases

(Philadelphia, PA) - Over the last several months, the labs of Yale Goldman, MD, PhD, Director of the Pennsylvania Muscle Institute at the University of Pennsylvania School of Medicine, and Erika Holzbaur, PhD, Professor of Physiology, have published a group of papers that, taken together, show proteins that function as molecular motors are surprisingly flexible and agile, able to navigate obstacles within the cell. These observations could lead to better ways to treat motor neuron diseases.

Motor neuron diseases are a group of progressive neurological disorders that destroy motor neurons, the cells that control voluntary muscles for such activities as speaking, walking, breathing, and swallowing. When these neurons die, the muscle itself atrophies. A well-known motor neuron disease is amyotrophic lateral sclerosis (ALS, commonly known as Lou Gehrig's disease).

Using a specially-constructed microscope that allows researchers to observe the action of one macromolecule at a time, the team found that a protein motor is able to move back and forth along a microtubule ?a molecular track ?rather than in one direction, as previously thought. They report their findings in a recent issue of Nature Cell Biology. The proteins in this motor, dynein and dynactin, are the "long-distance truckers" of the cell: working together, they are responsible for transporting cellular cargo from the periphery of a cell toward its nucleus.

"My lab concentrates on the cellular and genetic aspects of the dynein-dynactin motor, while Yale's group delves into the mechanics of the motor itself," says Holzbaur. "We're deconstructing the system to understand how it all works in a living cell. In the lab, we start with a clean microtubule with a motor walking across it, but in the cell it's different: microtubules are packed together, with proteins studded along them, and cellular organelles and mitochondria are crammed in. The motor needs to maneuver around those 'obstruct ions.'" Goldman and Holzbaur suggest that the ability of the dynein-dynactin motor to move in both directions along the microtubule may provide the necessary maneuvering ability to allow for effective long distance transport.

Earlier this year, as reported in The Journal of Cell Biology, researchers in Holzbaur's lab found that a mutation in dynactin leads to degeneration of motor neurons, the hallmark of motor neuron disease. This mutation decreases the efficiency of the dynein-dynactin motor in "taking out the trash" of the cell, and thus leads to the accumulation of misfolded proteins in the cell, which may in turn lead to the degeneration of the neuron.

Scientists are now finding that many other molecular motors are remarkably flexible in their behavior. In several further papers published in the Proceedings of the National Academy of Sciences and The EMBO Journal, Goldman and colleagues at the University of Illinois found that a "local delivery" motor, termed myosin V, moves cargo with a variable path short distances along another type of cellular track called actin. This flexibility could help myosin V navigate crowded regions of the cell where the actin filaments criss-cross and where other cellular components would otherwise pose an impediment to motion. Defects in myosin V function also result in neurological defects.

Most of these molecular motors are associated with specific diseases or developmental defects, so understanding the puzzling aspects of their behavior in detail is necessary for building nanotechnological machines that, for example, could replace defective motors. "The ultimate goal is to find ways to treat motor neuron disease as well as other diseases that involve cellular motors and also construct nano-scale machines based on these biological motors," says Goldman.


'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
2. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
3. UCSD Discovery Shows How Embryonic Stem Cells Perform Quality Control Inspections
4. Discovery Could Lead To Novel Approaches In HIV Treatment
5. Discovery Promises Simpler Therapy for Sickle Cell Disease
6. Discovery may lead to better Candidiasis drug
7. Protein Discovery Could Unlock The Secret To Better TB Treatment
8. Discovery clarifies role of peptide in biological clock
9. Eliminate Data Analysis Bottlenecks in Drug Discovery
10. Discovery of New Dopamine Action May Yield Alternative Psychiatric Drugs
11. Discovery could be key to bioterrorism defense
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
(Date:3/22/2016)... India , March 22, 2016 /PRNewswire/ ... market research report "Electronic Sensors Market for Consumer ... Proximity, & Others), Application (Communication & IT, ... Geography - Global Forecast to 2022", published ... industry is expected to reach USD 26.76 ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
Breaking Biology Technology: