Navigation Links
Discovery could lead to better control of hemorrhagic fever viruses

Researchers report discovering the receptor through which a group of life-threatening hemorrhagic fever viruses enter and attack the body's cells, and show that infection can be inhibited by blocking this receptor. The findings, to be published online by the journal Nature on February 7, give a clue to the high lethality of New World arenaviruses, suggest a way of reducing the severity of infection, and point the way toward a sorely needed treatment strategy.

The four viruses, known as the Machupo, Guanarito, Junin and Sabia viruses, cause Bolivian, Venezuelan, Argentine and Brazilian hemorrhagic fever, respectively, with mortality rates of about 30 percent. No vaccine is available, though a weakened form of Junin virus has been given to Argentinean farmers with some success. In addition to causing occasional disease outbreaks, mostly in poor, rural areas of South America, the viruses are of U.S. government interest because of their potential as bioterrorism agents. All four are classified as NIAID Category A Priority Pathogens and must be handled in Biosafety Level 4 containment facilities.

The researchers, led by Hyeryun Choe, PhD, of Children's Hospital Boston's Pulmonary Division, and Michael Farzan, PhD, of Harvard Medical School (HMS), first investigated the Machupo virus. To identify its cellular receptor, they made copies of the "spike" protein, used by the virus to gain entry into cells, and added it to cells from African green monkeys, known to be highly susceptible to Machupo virus infection. Later, they broke the cells open and isolated the spike protein and the cellular protein to which it had attached itself. Then, using a technique called mass spectrometry, they analyzed this attached cellular protein to determine its identity.

The receptor, identified in Choe's lab by Jonathan Abraham, PhD, an MD-PhD student at HMS, turned out to be transferrin receptor 1 (TfR1), a well-known protein that is key in enabling cells to take up iron. Additional studies, performed in Farzan's lab by HMS graduate student Sheli Radoshitzky, confirmed that TfR1 is also the receptor for the other three New World arenaviruses. (Abraham and Radoshitzky are both first authors on the study.) Expertise from Nancy Andrews, MD, PhD, an expert in iron metabolism at Children's, sped up the work.

Although not all hemorrhagic fever viruses use TfR1 to enter the body's cells, the discovery may help explain why these viruses wreak such havoc, damaging multiple organs and causing bleeding under the skin, in internal organs, and from orifices like the mouth, eyes or ears.

Because of TfR1's essential function in transporting iron into cells, it is found on the surface of virtually every cell of the body. It is abundant on endothelial cells, which line blood vessels, a fact that may help account for the bleeding and organ damage caused by the viruses. TfR1 is also especially abundant on activated immune cells ?the very cells that mobilize to fight the viruses ?making them especially vulnerable to infection.

"This may help explain why mortality is so high," says Choe, the study's senior author.

Choe now hopes to translate these findings into treatments to contain natural or intentional outbreaks of New World hemorrhagic fever. Serendipitously, several anti-TfR1 antibodies have already been developed as anticancer therapeutics (cancer cells are also high in TfR1), and some have already been through clinical trials. Choe's lab will test these antibodies, hoping to find one that inhibits virus entry without compromising TfR1's essential function in cellular iron uptake.

"If some of these antibodies work, they could be used clinically fairly soon," Choe says.

Coincidentally, Stephen Harrison, PhD, a structural biologist and Howard Hughes Medical Institute investigator at Children's, had crystallized TfR1 and determined its 3-dimensional structure in 1999. Knowled ge of TfR1's structure will speed up the Choe lab's efforts to pinpoint the parts of the molecule that are exploited by New World hemorrhagic fever viruses, which is necessary for the development of targeted antiviral drugs that block those parts, but not the parts involved in iron uptake.

The findings of Choe and colleagues also suggest that iron supplements may reduce the severity of New World virus infections. Past studies have shown that when the iron level in the body is low, the number of transferrin receptors in tissues increases. Consistent with these findings, Choe's team found that New World arenaviruses infect cells more efficiently when iron levels are low, and that adding iron to cultured cells makes them less susceptible to infection. Choe notes that New World hemorrhagic fever outbreaks mostly occur in poor rural areas, where people are often deficient in micronutrients, including iron, possibly predisposing them to more severe infection when exposed to the rodents that carry the viruses.

Choe's lab is now trying to find the cellular receptor for other viruses that cause hemorrhagic fever in humans. In 2003, Choe's lab collaborated with Farzan's lab to identify angiotensin converting enzyme2 (ACE2) as the receptor for the SARS virus.


Source:Children's Hospital Boston

Related biology news :

1. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
2. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
3. UCSD Discovery Shows How Embryonic Stem Cells Perform Quality Control Inspections
4. Discovery Could Lead To Novel Approaches In HIV Treatment
5. Discovery Promises Simpler Therapy for Sickle Cell Disease
6. Discovery may lead to better Candidiasis drug
7. Protein Discovery Could Unlock The Secret To Better TB Treatment
8. Discovery clarifies role of peptide in biological clock
9. Eliminate Data Analysis Bottlenecks in Drug Discovery
10. Discovery of New Dopamine Action May Yield Alternative Psychiatric Drugs
11. Discovery could be key to bioterrorism defense
Post Your Comments:

(Date:10/29/2015)...  Connected health pioneer, Joseph C. Kvedar , ... health and wellness, and the business opportunities that arise ... Internet of Healthy Things . Long before health ... Dr. Kvedar, vice president, Connected Health, Partners HealthCare, was ... care from the hospital or doctor,s office into the ...
(Date:10/27/2015)... 2015 Synaptics Inc. (NASDAQ: SYNA ), the ... has adopted the Synaptics ® ClearPad ® ... its newest flagship smartphones, the Nexus 5X by LG ... --> --> Synaptics works closely ... collaboration in the joint development of next generation technologies. ...
(Date:10/23/2015)... GOLETA, California , October 23, 2015 /PRNewswire/ ... SensoMotoric Instruments (SMI) announce a mobile plug and play ... during interactive real-world tasks SensoMotoric Instruments (SMI) ... their established wearable solutions for eye tracking and physiological ... captured with SMI Eye Tracking Glasses 2w ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2015 2 nouvelles études permettent d ... les différences entre les souches bactériennes retrouvées dans la plaque ... êtres humains . Ces recherches  ouvrent une nouvelle ... en charge efficace de l,un des problèmes de ... .    --> 2 nouvelles études permettent ...
(Date:11/25/2015)... IN (PRWEB) , ... November 25, 2015 , ... ... (AMA) and the Organization of Black Aerospace Professionals (OPBAP) has been formalized with ... and other AMA team leaders met with OPBAP leaders Capt. Karl Minter and ...
(Date:11/24/2015)... ... 2015 , ... The United States Golf Association (USGA) today announced Dr. Bruce ... Presented annually since 1961, the USGA Green Section Award recognizes an individual’s distinguished service ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology in the ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... year and one of the premier annual events for pharmaceutical manufacturing: 2015 Annual ... November 2015, where ISPE hosted the largest number of attendees in more than ...
Breaking Biology Technology: