Navigation Links
Diabetic nerve therapy shows 'striking' results

Research into a new treatment for nerve damage caused by diabetes could bring relief to millions of diabetic patients, say experts.

The treatment might also reduce the number of amputations of toes and feet if early effects on nerve protection and regeneration are borne out long-term. Nerve disease in diabetes is the major cause of non-traumatic lower limb amputations in Europe and North America.

Scientists at The University of Manchester, working with colleagues at American biotech firm Sangamo BioSciences Inc, have discovered a way of stimulating genes that prevent nerve damage caused by the disease.

Professor David Tomlinson, who is leading the research in Manchester, says the study has massive potential for the management of diabetic neuropathies or nerve disorders.

"Diabetic neuropathy is a major problem in insulin-dependent diabetes, particularly in patients who have had the disease for a period of time," said Professor Tomlinson, who is based in the University's Faculty of Life Sciences.

"This approach to gene therapy is quite different to previous attempts at treatment as we do not inject a gene that produces a 'foreign' copy of a therapeutic protein. This is the normal approach and has problems from immunological side-effects.

"Instead, we turn on the patient's own gene to produce a natural version of this therapeutically beneficial protein. The most significant advantage of this is that the protein is made as if the patient's body had made it naturally.

"Our study has shown that a single treatment with a DNA-binding protein protected against nerve damage that in humans can lead to limb loss."

The results of the pre-clinical studies were recently presented to the American Diabetes Association in California and the first phase of clinical trials has now begun.

An estimated 50 per cent of patients with long-term diabetes develop some form of neuropathy that can cause numbness and sometimes pain and weakness in the hands, arms, feet and legs.

Currently, patients are treated with painkillers and antidepressants that do not treat the underlying nerve damage. Progression to amputation is not inevitable but is always a threat.

Problems may also occur in other organs, including the heart, kidneys, sex organs, eyes and digestive tract.

The incidence of diabetes, a condition in which the amount of glucose in the blood is too high, is increasing dramatically, with the World Health Organisation estimating that some 300 million people worldwide could be affected by 2025.

The causes of diabetic neuropathy are not fully understood but researchers investigating the effect of glucose on nerves believe it is likely to be a combination of factors.

Sangamo's Chief Medical Officer, Dr Dale Ando, said: "We have been greatly encouraged by Professor Tomlinson's data and have moved the programme into the clinic.

"The first phase of human trials will assess safety and examine the effects of a single treatment in one leg compared with a placebo treatment in the other leg."

The Diabetes and Glandular Disease Clinic in San Antonio, Texas, is involved in the clinical trials.

Dr Mark Kipnes, a clinical investigator for Sangamo and endocrinologist at the clinic, said: "Currently, there are no effective therapies available to treat this debilitating and frequent complication of diabetes and patients are generally prescribed painkillers to alleviate symptoms.

"We are excited to be involved in testing this novel approach that may potentially have a dramatic therapeutic effect in populations of patients already suffering from neuropathy and those that are at risk of developing it."


'"/>

Source:University of Manchester


Related biology news :

1. World-first Living Donor Islet Cell Transplant A Success; Procedure Offers Promise For Diabetics
2. Wisconsin scientists grow critical nerve cells
3. Clam embryo study shows pollutant mixture adversely affects nerve cell development
4. Zebrafish may hold key to understanding human nerve cell development
5. New component of the brakes on nerve regeneration found
6. Cerebral navigation: How do nerve fibers know what direction to grow in?
7. Molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves
8. Malfunctioning bone marrow cells sabotage nerve cells in diabetes
9. UIC researchers show protein routes messages in nerve cells
10. Researchers find molecule that inhibits regrowth of spinal nerve cells
11. Gradient guides nerve growth down spinal cord
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/19/2017)... April 19, 2017 The global ... landscape is marked by the presence of several large ... held by five major players - 3M Cogent, NEC ... accounted for nearly 61% of the global military biometric ... in the global military biometrics market boast global presence, ...
(Date:4/13/2017)... 2017 UBM,s Advanced Design and Manufacturing event ... emerging and evolving technology through its 3D Printing and ... alongside the expo portion of the event and feature ... focused on trending topics within 3D printing and smart ... event will take place June 13-15, 2017 at the Jacob ...
(Date:4/11/2017)... Research and Markets has announced the addition of the ... ... to grow at a CAGR of 30.37% during the period 2017-2021. ... been prepared based on an in-depth market analysis with inputs from ... prospects over the coming years. The report also includes a discussion ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... of medical marijuana products targeting the needs of consumers who are incorporating medical ... takes place in Phoenix, Arizona. , As operators of two successful Valley dispensaries, ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C kit. Researchers ... perform Hi-C metagenome deconvolution using their own facilities, supplementing the company’s full-service ...
(Date:10/6/2017)... ... October 06, 2017 , ... ... discussion and webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). ... Institute. The event is free and open to the public, but registration is ...
Breaking Biology Technology: