Navigation Links
Depression model leaves mice with molecular scar

In addition to triggering a depression-like social withdrawal syndrome, repeated defeat by dominant animals leaves a mouse with an enduring "molecular scar" in its brain that could help to explain why depression is so difficult to cure, suggest researchers funded by the National Institutes of Health's (NIH) National Institute of Mental Health (NIMH).

In mice exposed to this animal model of depression, silencer molecules turned off a gene for a key protein in the brain's hippocampus. By activating a compensatory mechanism, an antidepressant temporarily restored the animals' sociability and the protein's expression, but it failed to remove the silencers. A true cure for depression would likely have to target this persistent stress-induced scar, say the researchers, led by Eric Nestler, M.D., The University of Texas Southwestern Medical Center, who report on their findings online in Nature Neuroscience during the week of February 26, 2005.

"Our study provides insight into how chronic stress triggers changes in the brain that are much more long-lived than the effects of existing antidepressants," explained Nestler.

Mice exposed to aggression by a different dominant mouse daily for 10 days became socially defeated; they vigorously avoided other mice, even weeks later. Expression of a representative gene in the hippocampus, a memory hub implicated in depression, plummeted three-fold and remained suppressed for weeks. However, chronic treatment with an antidepressant (the tricyclic imipramine) restored expression of the gene for brain derived neurotrophic factor (BDNF) to normal levels and reversed the social withdrawal behavior. BDNF in the hippocampus has been linked to memory, learning and depression, but Nestler said social defeat stress probably similarly affects other genes there as well.

The researchers pinpointed how social defeat changes the BDNF gene's internal machinery. They traced the gene expression changes to long-lasting mo difications in histones, proteins that regulate the turning on-and-off of genes via a process called methylation. Methyl groups, the silencer molecules, attach themselves to the histones, turning off the gene. Notably, imipramine was unable to remove these silencer molecules, suggesting that they remained a latent source of vulnerability to future depression-like responses to stress.

Imipramine reversed the suppressed BDNF gene expression by triggering a compensatory mechanism, acetylation, in which molecular activators attach themselves to the gene and overcome the silencer molecules. Imipramine turned off an enzyme (Hdac5) that degrades the activators, allowing them to accumulate.

"The molecular scar induced by chronic stress in the hippocampus, and perhaps elsewhere in the brain, can't be easily reversed," said Nestler. "To really cure depression, we probably need to find new treatments that can remove the silencer molecules."


'"/>

Source:NIH/National Institute of Mental Health


Related biology news :

1. Depression gene may weaken mood-regulating circuit
2. Scientists identify new model Of NK cell development
3. Genrate: a generative model that finds and scores new genes and exons in genomic microarray data
4. Molecular models advance the fight against malaria
5. NYU and MSKCC research provides model for understanding chemically induced cancer initiation
6. Genetic therapy reverses nervous system damage in animal model of inherited human disease
7. Disease progression model of pancreatic cancer developed by Penn researchers
8. A new way to share models of biological systems
9. Understanding biases in epidemic models important when making public health predictions
10. Climate model links higher temperatures to prehistoric extinction
11. Gene therapy advance treats hemophilia in mouse models
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/30/2017)... , March 30, 2017  On April 6-7, ... Hack the Genome hackathon at Microsoft,s headquarters ... two-day competition will focus on developing health and wellness ... Hack the Genome is the first ... tremendous. The world,s largest companies in the genomics, tech ...
(Date:3/27/2017)... 27, 2017  Catholic Health Services (CHS) has ... Society (HIMSS) Analytics for achieving Stage 6 on ... . In addition, CHS previously earned a place ... an electronic medical record (EMR). "HIMSS ... of EMR usage in an outpatient setting.  This ...
(Date:3/22/2017)... , March 21, 2017   Neurotechnology ... object recognition technologies, today announced the release of ... (SDK), which provides improved facial recognition using up ... on a single computer. The new version uses ... improve accuracy, and it utilizes a Graphing Processing ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... August 15, 2017 , ... Nanomedical Diagnostics , ... development, announces the launch of the new NHS Agile biosensor chip . ... data for a wide range of molecules, including small and large molecules, peptides, ...
(Date:8/15/2017)... ... August 15, 2017 , ... ... threatened by various biotic and abiotic factors. During this educational webinar, participants will ... coffee, as well as gain a better understanding of how genomics is important ...
(Date:8/11/2017)... Md. , Aug. 11, 2017 /PRNewswire/ ... a New York Times article regarding the ... billion, according to Kalorama Information.  The article, ... App for That"  used information from ... Patient Monitoring & Telemedicine Market  (Sleep, Diabetes, ...
(Date:8/10/2017)... ... August 09, 2017 , ... Teachers from three Philadelphia ... August 14th through the 16th, the University City Science Center will kick off ... 2016, provides Philadelphia-based middle school educators an opportunity for professional development related to ...
Breaking Biology Technology: