Navigation Links
Dangerous tricksters: Some bacterie use immune cells to reproduce

Macrophages are effective weapons used by our immune system to absorb and digest pathogenic intruders. Some bacteria, however, can subvert this defence mechanism and even multiply within the macrophages. Cell biologists at the University of Bonn have revealed such a strategy in a recently publication in the journal 'Traffic' (Vol. 6, No. 8, August 2005, pp.635-653). Their findings reveal that the pathogens escape the 'stomach' of the macrophages which might otherwise digest them.

Action stations in the horse's lung! A bacterium has just been inhaled into a horse's bronchial tubes, and immune cells are quickly recruited to the spot to neutralise the intruder. Macrophages, cells whose job is to devour such intruders, are attracted by substances typical of bacteria, which surround the microbe like a cloud. As soon as the immune cells have detected the intruder, they cover the bacterium with part of their own cell membrane like a hood, creating a membrane sac in which the intruder is trapped. This 'phagosome' (from Greek phagein = to eat) cuts itself off into the inside of the macrophage and is now the point on which all the macrophage's offensive weaponry is concentrated: the phagosome is flooded with oxygen radicals and acid. Another kind of membrane bags, the lysosomes, merge with the phagosome and confront the microbe with highly reactive digestive enzymes. A few hours after the first alarm bells have rung there is nothing left of the bacterium, and the potential danger has been eliminated.

Multiplication inside the killer

This is what normally happens. However, a whole range of pathogens have become specialised in tricking this very part of the defence mechanism and survive or even multiply in these macrophages which are actually supposed to kill them.

One of these pathogens is Rhodococcus equi. This bacterium can cause a lung disease in young foals which is very similar to tuberculosis in humans. Hence, it is not too surpris ing that Rhodococcus equi is closely related to the tubercle bacillus (Mycobacterium tuberculosis). Since macrophages are the main target of Rhodococcus in the horse's lung, a lot of rhodococci are found there during an infection.

In the Bonn Institute of Cell Biology Eugenia Fernandez and Marco Polidori in Professor Albert Haas's team have been examining why Rhodococcus equi is not killed and digested in macrophages, and is even able to multiply there. In the course of this study the group was able to demonstrate that the rhodococci are able to put prevent the phagosome development inside the macrophage, preventing acidification and merging with the lysosomes. As a result the bacteria are not exposed to the large array of lysosomal digestive enzymes and acid.

Killing the killer

'Basically what this means is that the rhodococci manipulate their host cell, they make it themselves comfartable in an environment free of acid and digestive enzymes and multiply there,' Professor Haas comments. Within a few days after the onset of the infection, the macrophages die of the infection, they disintegrate and release the multiplied pathogens.

The Bonn cell biologists have demonstrated in the past that this cell death is 'necrotic'. This means that cell components escape, attract other immune cells and activating them. Ultimately the result is inflammation and tissue damage. 'It is quite possible that rhodococci do not really mind this,' Professor Haas says, 'since they can then grab a passing macrophage and colonise fresh material.'

The next aim of the Bonn researchers is to investigate which bacterial features are important for preventing the merger of phagosomes and lysosomes, and how the immune system normally successfully eradicates an infection despite all the tricks the bacteria use.

Rhodococci, incidentally, can also cause diseases resembling TB in AIDS patients which may be fatal. 'This is an additional important a spect for our work,' Prof. Haas stresses. 'We assume that our research can contribute to understanding TB in humans.' Unlike foals, however, the vast majority of humans do not need to be afraid of this pathogen. 'In every spadeful of soil from an affected farm there are millions upon millions of rhodococci, yet it practically never happens that healthy humans are successfully infected by them.'


'"/>

Source:University of Bonn


Related biology news :

1. Fox Chase Cancer Center scientists identify immune-system mutation
2. Genetically modified natural killer immune cells attack, kill leukemia cells
3. Studies reveal methods viruses use to sidestep immune system
4. Jumping gene helps explain immune systems abilities
5. Scientists solve structure of key protein in innate immune response
6. Rats infected as newborns grew up vulnerable to memory problems during an immune challenge
7. NYU study reveals how brains immune system fights viral encephalitis
8. Chemists identify immune system mechanism for methamphetamine binges
9. Multi-purpose protein regulates new protein synthesis and immune cell development
10. Genetic defects give the immune system the green light to attack the pancreas
11. Leprosy microbes lead scientists to immune discovery
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:8/15/2017)... --  ivWatch LLC , a medical device company focused on improving ... of its ISO 13485 Certification, the global standard for medical device ... (ISO®). ... Monitoring device for the early detection of IV infiltrations. ... "This is an important milestone for ivWatch, as it ...
(Date:6/14/2017)... , June 15, 2017  IBM (NYSE: IBM ) is ... tech event dedicated to developing collaboration between startups and global ... June 15-17. During the event, nine startups will showcase the ... in various industries. France ... international market, with a 30 percent increase in the number ...
(Date:5/6/2017)... May 5, 2017 RAM Group ... a new breakthrough in biometric authentication based on ... mechanical properties to perform biometric authentication. These new sensors ... material created by Ram Group and its partners. This ... transportation, supply chains and security. Ram Group is ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... SAN DIEGO , Oct. 9, 2017 /PRNewswire/ ... a biological mechanism by which its ProCell stem ... of critical limb ischemia.  The Company, demonstrated that ... the amount of limbs saved as compared to ... of the molecule HGF resulted in reduction of ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... ... a four-tiered line of medical marijuana products targeting the needs of consumers who ... packaging of Kindred takes place in Phoenix, Arizona. , As operators of two ...
(Date:10/7/2017)... , ... October 06, 2017 ... ... in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring ... kit and accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using ...
(Date:10/6/2017)... ... October 06, 2017 , ... On Tuesday, ... webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The featured ... event is free and open to the public, but registration is required. , ...
Breaking Biology Technology: