Navigation Links
DNA Molecules Used To Assemble Nanoparticles

University of Michigan researchers have developed a faster, more efficient way to produce a wide variety of nanoparticle drug delivery systems, using DNA molecules to bind the particles together.

Nanometer-scaled dendrimers can be assembled in many configurations by using attached lengths of single-stranded DNA molecules, which naturally bind to other DNA strands in a highly specific fashion.

"With this approach, you can target a wide variety of molecules---drugs, contrast agents---to almost any cell," said Dr. James R. Baker Jr., the Ruth Dow Doan Professor of Nanotechnology and director of the Center for Biologic Nanotechnology at U-M.

Nanoparticle complexes can be specifically targeted to cancer cells and are small enough to enter a diseased cell, either killing it from within or sending out a signal to identify it. But making the particles is notoriously difficult and time-consuming.

The nanoparticle system used by Baker's lab is based on dendrimers, star-like synthetic polymers that can carry a vast array of molecules on the ends of their arms. It is possible to build a single dendrimer carrying many different kinds of molecules such as contrast agents and drugs, but the synthesis process is long and difficult, requiring months for each new molecule added to the dendrimer in sequential steps. And the yield of useful particles drops with each successive step of synthesis.

For a paper published Jan. 21 in the journal Chemistry and Biology, U-M Biomedical Engineering graduate student Youngseon Choi built nanoparticle clusters of two different functional dendrimers, one designed for imaging and the other for targeting cancer cells. Each of the dendrimers also carried a single-stranded, non-coding DNA synthesized by Choi.

In a solution of two different kinds of single dendrimers, these dangling lengths of DNA, typically 34-66 bases long, found complementary sequences on other dendrimers and knitted together, forming bar bell shaped two-dendrimer complexes with folate on one end and fluorescence on the other end.

Folate receptors are over-expressed on the surface of cancer cells, so these dendrimer clusters would tend to flock to the diseased cells. The other end of the complex carries a fluorescent protein so that the researchers can track their movement.

A series of experiments using cell sorters, 3-D microscopes and other tools verified that these dendrimers hit their targets, were admitted into the cells and gave off their signaling light. The self-assembled dendrimer clusters were shown to be well formed and functional.

"This is the proof-of-concept experiment," Choi said. But now that the assembly system has been worked out, other forms of dendrimer clusters are in the works.

"If you wanted to make a therapeutic that targeted five drugs to five different cells, it would be 25 synthesis steps the traditional way," Baker said. At two to three months per synthesis, and a significant loss of yield for each step, that approach just wouldn't be practical.

Instead, the Baker group will create a library of single-functional dendrimers that can be synthesized in parallel, rather than sequentially, and then linked together in many different combinations with the DNA strands.

"So it's like having a shelf full of Tinker Toys," Baker said.

An array of single-functional dendrimers, such as targets, drugs, and contrast agents, and the ability to link them together quickly and easily in many different ways would enable a clinic to offer 25 different "flavors" of dendrimer with only ten synthesis steps, Baker said.

Baker foresees a nanoparticle cluster in which a single dendrimer carries three single-strands of DNA, each with a sequence specific to the DNA attached to other kinds of dendrimers. Put into solution with these other tinker toys, the molecule would self-assemble into a four-dendrimer complex carrying one drug, one targ et, and one fluorescent.


'"/>

Source:University of Michigan


Related biology news :

1. Duke Chemists Isolating Individual Molecules Of Toxic Protein In Alzheimers, Parkinsons Disease
2. Touching Molecules With Your Bare Hands
3. Team Invents Device For Weighing Individual Molecules
4. Molecules in blood foretell development of preeclampsia
5. Imaging Lymph Nodes with Nanoparticles
6. Probing The Promise And Perils Of Nanoparticles
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/15/2016)... , Dec. 15, 2016   WaferGen Bio-systems, ... held genomics technology company, announced today that on December ... Qualifications Department of The Nasdaq Stock Market LLC which ... bid price of WaferGen,s common stock had been at ... WaferGen has regained compliance with Listing Rule 5550(a)(2) of ...
(Date:12/15/2016)... , Dec. 15, 2016  There is much ... doors or starting the engine. Continental will demonstrate the ... Las Vegas . Through the combination of ... and Entry) and biometric elements, the international technology company ... vehicle personalization and authentication. "The integration of ...
(Date:12/8/2016)... Market Research Future published a half cooked research report ... Security and Service Market is expected to grow over the CAGR ... Highlights: ... Mobile Biometric Security and Service Market is ... of authentication and security from unwanted cyber threats. The increasing use ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... 19, 2017 Research and Markets has announced ... Biomolecules, Cancer Type, Application - Global Opportunity Analysis and Industry Forecast, ... ... global market is projected to reach $15,737 million by 2022 from ... to 2022. Omic technologies segment accounted for more ...
(Date:1/19/2017)... 19, 2017 /PRNewswire -- WuXi AppTec, a leading ... and technology platform, today announced that it has ... preclinical drug discovery contract research organization (CRO). After ... wholly-owned subsidiary of WuXi, and will continue to ... greater services. The acquisition will further strengthen WuXi,s ...
(Date:1/19/2017)... Berkeley, CA (PRWEB) , ... January 19, 2017 ... ... the delivery of product vigilance software to leading biopharmaceutical and medical device manufacturers ... Mail is a fully 21 CFR Part 11-compliant email client designed to provide ...
(Date:1/19/2017)... , Jan. 19, 2017 AquaBounty Technologies, ... on enhancing productivity in aquaculture and a majority-owned subsidiary ... that it has completed the listing of its common ... equity subscription from Intrexon. "AquaBounty,s listing on ... will broaden our exposure to the U.S. markets as ...
Breaking Biology Technology: