Navigation Links
Critical hearing gene helps send auditory messages to brain

By studying a gene earlier linked to deafness in humans, researchers now have new insight into the molecular process by which components of the inner ear send messages to the brain. The team reports its findings in the October 20, 2006, issue of the journal Cell, published by Cell Press.

The researchers found that mice lacking the gene otoferlin are profoundly deaf. The animals' deafness results from an inability to translate sound stimulation into the release of a chemical nerve messenger, or neurotransmitter, that would usually pass that information to auditory nerves and on to the brain, they reported. The sensory structures within the mutant animals' ears otherwise appeared to develop normally.

"Study of the genes responsible for deafness can bring new insight into the molecular basis of how hearing works," said Christine Petit of the Institut Pasteur in Paris, France.

The sensory machinery within the inner ear is particularly intriguing, she added, "in the sense that it operates with extreme temporal precision."

In mammals, the hearing organ, or cochlea, is a snail-shaped structure of the inner ear that is filled with a watery fluid. When that liquid moves in response to sound vibrations, thousands of sensory "hair" cells are set into motion.

Those sensory receptors come in two types: inner and outer hair cells. Outer hair cells amplify sound within the cochlea, allowing for hearing sensitivity. In contrast, inner hair cells are "the genuine sensory cells transmitting information on the temporal structure and intensity of sound to the central nervous system," Petit said.

While outer hair cell defects can lead to considerable hearing loss, she added, a loss of inner hair cell function results in total deafness as messages cannot get through.

Inner hair cells operate in a manner comparable to neurons, she said. When an inner hair cell is stimulated, channels open up allowing calcium to flow in. In turn, that influx of calcium leads small "sacs" full of neurotransmitter to fuse with the cell membrane, releasing their contents into the space, or synapse, between the sensory cells and auditory nerve endings.

That chemical release allows nerve messages to be passed from one neuron to another. In inner hair cells, those neurotransmitter-filled vesicles are held in place at the cell membrane by tethers known as "ribbons."

The current study follows up a report by Petit's team several years ago that people with a recessive form of deafness harbor two abnormal copies of the otoferlin gene. They also had some evidence hinting that the gene might act as a calcium sensor with an important role in neurotransmitter release by the inner hair cells. For example, otoferlin resembles a calcium-sensing protein involved in release of chemicals by sensory neurons elsewhere in the body. Their current study provides additional evidence to confirm that notion.

They now report that otoferlin activity in the cochlea occurs only in the inner hair cells, where it concentrates in the ribbon-associated synaptic vesicles. They also found that the otoferlin protein binds calcium and interacts with other proteins known to play a role in neurotransmitter release.

To further examine the gene's role in a living animal, the researchers studied "knockout" mice completely lacking a functional otoferlin gene. When exposed to sounds of various frequencies, the mice showed no detectable activity in parts of the brain that normally process sound.

They further found that the profoundly deaf mice suffered a complete loss of neurotransmitter release from their inner hair cells, despite having an apparently normal "ribbon synapse" and calcium flow.

The findings led the researchers to conclude that "otoferlin is essential for a late step of [neurotransmitter release] and may act as the major [calcium] sensor triggering membrane fusion at the inner hair cell ribbon synapse."

The findings also have therapeutic implications, as they suggest that people who are deaf as a result of defects in otoferlin "will benefit from cochlear implants," the researchers said. Cochlear implants analyze sound messages and convert them into electrical signals, bypassing the cochlea to directly stimulate the auditory nerves.

"That's good news," Petit said, since otoferlin-linked deafness is an auditory neuropathy, a class of hearing impairment for which the best course of treatment had remained uncertain.


'"/>

Source:Cell Press


Related biology news :

1. Critical role in programmed cell death identified
2. White Blood Cell Waste Disposal System Plays Critical Regulatory Role
3. Critical step traced in anthrax infection
4. Frog’s ear canal may provide insights for understanding human hearing loss
5. Yale researchers find environmental toxins disruptive to hearing in mammals
6. Nicotine exposure during development leads to hearing problems
7. Female birds boost up their eggs when hearing sexy song
8. St. Jude finds clues to hearing loss from chemotherapy
9. To elude bats, a moth keeps its hearing in tune
10. Stem cell transplants explored at Stanford as a possible treatment for hearing loss
11. Study shows isolation of stem cells may lead to a treatment for hearing loss
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/10/2016)... , February 10, 2016 ... According to 2016 iris recognition market ... iris recognition is more widely accepted for ... with both fingerprint and iris recognition technology ... user to avoid purchasing two individual biometrics ...
(Date:2/9/2016)... AWRE ), a leading supplier of biometrics software and services, ... December 31, 2015.  --> --> ... an increase of 61% compared to $4.3 million in the same ... was $2.6 million compared to $0.2 million in the fourth quarter ... Higher revenue and operating income in the fourth quarter of this ...
(Date:2/9/2016)... -- Vigilant Solutions announces today that an agency used its ... lead in a difficult homicide case. The agency then used ... suspect vehicle. Due to the ongoing investigation, the agency name ... the agency,s request. --> --> ... found deceased at an intersection here in the City. He ...
Breaking Biology News(10 mins):
(Date:2/8/2016)... ... February 08, 2016 , ... Franz Inc. ... Graph Database technology, today announced the availability of AllegroGraph 6, the leading Semantic ... Cloudera Certified Technology Program (CCPT). AllegroGraph is the first Semantic Graph ...
(Date:2/8/2016)... , Feb. 8, 2016  Diplomat Pharmacy, Inc. (NYSE: DPLO) announced today that its new ... specialty pharmacy resource–user-centric, story-driven, knowledge-based and mobile-friendly. Visit ... ... ... "The goal was ...
(Date:2/6/2016)... ... February 06, 2016 , ... ... , The Center for Excellence in Education Sponsors Teacher Training Program , Bite ... 4, 2016 – The Center for Excellence in Education (CEE) will sponsor a ...
(Date:2/5/2016)... Feb. 5, 2016 On Thursday, February 11, ... source for community, health and disaster services, and the ... integrate to enhance care coordination and service delivery for ... they need and to better connect service providers to ... San Diego has handled more ...
Breaking Biology Technology: