Navigation Links
Cracking the perception code

The brain may interpret the information it receives from sensory neurons using a code more complicated than scientists previously thought, according to new research from the National Autonomous University of Mexico and Cold Spring Harbor Laboratory. By studying how monkeys perceive a vibrating object when it touches the skin, scientists found that changes in an animal's attention over time influence how a sensory signal is interpreted.

Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo of the Institute of Cellular Physiology at the National Autonomous University of Mexico and his colleagues--Rogelio Luna and Adrián Hernández, also of the National Autonomous University of Mexico, and Carlos D. Brody of Cold Spring Harbor Laboratory in New York--report their results in the September 2005 issue of the journal Nature Neuroscience, published online July 31, 2005.

Neuroscientists already knew that touching the skin with a vibrating object causes specialized sensory neurons in the brain to fire, and that firing of these neurons, which are found in a region of the brain known as the primary somatosensory cortex, is directly related to monkeys' ability to tell how fast something is vibrating, Romo said. But the neurons' firing patterns are complex, and it's been tricky to tease out "which component of the neuronal activity was more likely associated with behavioral performance," he explained.

Theoretically, there are many ways in which neurons could relay information about stimulus frequency, Romo said. Frequency information might be encoded in the time between consecutive neuronal firings, the overall rate of firing, or the number of times a neuron fires.

To distinguish among these possibilities, Romo and his colleagues designed an experiment in which they touched the monkeys' fingertips with a vibrating but painless probe for varying lengths of time. The monkeys were first taught to respond to varying vibration frequencies; in a training session, the scientists touched the monkeys twice in a row, with the probe vibrating at a different frequency each time. The monkeys signaled to the experimenters which stimulus was vibrating faster, and, when they were correct, they were rewarded with a treat.

The standard stimulus that the scientists trained the monkeys to respond to lasted 500 milliseconds (half a second). They found that when they used a stimulus that lasted 750 milliseconds instead, the monkeys consistently thought the probe was vibrating with a higher frequency than it actually was. The same thing happened in reverse; if a stimulus was given for only 250 milliseconds, the monkeys thought it was vibrating at a lower frequency. The effect was stronger for the shortened stimulus than for the lengthened stimulus, Romo noted.

Based on this experiment, it seemed most likely that the monkeys were determining the vibration frequency by the number of times the neurons fired, Romo said, since the firing rate and time between firings wouldn't change just because the stimulus duration changed.

The scientists knew they hadn't quite cracked the neural code, though, because the magnitude effects weren't right; the monkeys thought that a stimulus that was 50 percent shorter was vibrating at just a slightly lower frequency than it was--not 50 percent lower.

To find the cause of this discrepancy, they recorded electrical activity in single neurons of the primary somatosensory cortex.

Since the shortened stimulus had produced a greater effect than the lengthened stimulus, the researchers wondered if the first part of the response might be more significant in determining vibration frequency.

They explored two possible mechanisms of action: the neural firing response could adapt to the stimulus over time, making the neurons more sensitive at the beginning than at the end, or a perceptual process after neuronal firing could give more subjec tive weight to the beginning of the response.

Looking at the electrical responses from single neurons, Romo and his colleagues determined that, if all the neuronal firings were treated equally, these responses could not explain the monkeys' perception of the signal. If the researchers assumed that the monkeys paid more attention to the beginning of the response, however, the neural activity perfectly explained the monkeys' errors when judging different durations of stimuli.

Romo suggested that the best explanation for the behavioral data was to assume that the monkeys pay the most attention to the first 250 milliseconds of neural firing, and that their attention falls off exponentially from there. The longer the stimulus, the less important additional neuronal firings become to the monkeys' perception of how fast the stimulus is vibrating, even though they continue to pay some attention throughout.

Figuring out how the brain codes sensory information into neuronal firing and how the firing patterns are interpreted by perceptual areas of the brain is a huge challenge in neurophysiology, one that's often overlooked, said Romo.

"The neuronal correlates reported in most of the neurophysiological studies in the different sensory modalities simply do not pay attention to this," he noted. "They assume that variation in firing rate is enough as a measure."


'"/>

Source:Howard Hughes Medical Institute


Related biology news :

1. Cracking the olfactory code in bees
2. Cracking the genetic code for control of gene expression
3. Cracking the egg
4. Cracking open the black box of autoimmune disease
5. Color perception is not in the eye of the beholder: Its in the brain
6. UC Riverside psychologist explores human perception, finds wow factor
7. Face perception is modulated by sexual orientation
8. Patients and their doctors have different perceptions about HIV and its treatment
9. Altered perception of reward in human cocaine addiction
10. BGSU biologist trying to crack microscopic code
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/23/2017)... , Mar. 23, 2017 Research and ... System Market Analysis & Trends - Industry Forecast to 2025" ... ... grow at a CAGR of around 8.8% over the next decade ... industry report analyzes the market estimates and forecasts for all the ...
(Date:3/20/2017)... , March 20, 2017 At this year,s CeBIT ... -based biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand together ... is this year,s CeBIT partner country. At the largest German biometrics company ... use: fingerprint, face and iris recognition as well as DERMALOG´s multi-biometrics system.   ... ...
(Date:3/9/2017)... , Australia , March 9, 2017 ... data at the prestigious World Lung Imaging Workshop at ... Andreas Fouras , was invited to deliver the latest ... medicine. This globally recognised event brings together leaders at ... the latest developments in lung imaging. ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... ... comprehensive rebrand and a name change to Fluence Analytics. , Fluence ... monitoring of polymer and biopharmaceutical manufacturing processes and R&D applications. The company’s ...
(Date:4/26/2017)... ... April 26, 2017 , ... Looking for gift ideas ... events company, offers one-of-a-kind gifts, ranging from gourmet cooking experiences to Farmer’s Market ... guests leave inspired with new cooking tips and techniques, thanks to Chef Jodi ...
(Date:4/26/2017)... Kong (PRWEB) , ... April 26, 2017 , ... ... hosted in EMEA and North America this May on ... May 16-18 , Donald H. Taylor, Chairman of the Learning and Performance Institute ...
(Date:4/25/2017)... , ... April 25, 2017 , ... ... Healthcare, is pleased to announce the company is now a certified iMedNet eClinical ... iMedNet software certification enables the company’s clinical research team to build, customize and ...
Breaking Biology Technology: