Navigation Links
Cracking open the black box of autoimmune disease

Autoimmune diseases such as type 1 diabetes, lupus and rheumatoid arthritis occur when the immune system fails to regulate itself. But researchers have not known precisely where the molecular breakdowns responsible for such failures occur. Now, a team of scientists from the Whitehead Institute and the Dana-Farber Cancer Institute have identified a key set of genes that lie at the core of autoimmune disease, findings that may help scientists develop new methods for manipulating immune system activity.

"This may shorten the path to new therapies for autoimmune disease," says Whitehead Member and MIT professor of biology Richard Young, senior author on the paper that will appear January 21 online in Nature. "With this new list of genes, we can now look for possible therapies with far greater precision."

The immune system is often described as a kind of military unit, a defense network that guards the body from invaders. Seen in this way, a group of white blood cells called T cells are the frontline soldiers of immune defense, engaging invading pathogens head on.

These T cells are commanded by a second group of cells called regulatory T cells. Regulatory T cells prevent biological "friendly fire" by ensuring that the T cells do not attack the body's own tissues. Failure of the regulatory T cells to control the frontline fighters leads to autoimmune disease.

Scientists previously discovered that regulatory T cells are themselves controlled by a master gene regulator called Foxp3. Master gene regulators bind to specific genes and control their level of activity, which in turn affects the behavior of cells. In fact, when Foxp3 stops functioning, the body can no longer produce working regulatory T cells. When this happens, the frontline T cells damage multiple organs and cause symptoms of type 1 diabetes and Crohn's disease. However, until now, scientists have barely understood how Foxp3 controls regulatory T cells because they knew almost nothing about the actual genes under Foxp3's purview.

Researchers in Richard Young's Whitehead lab, working closely with immunologist Harald von Boehmer of the Dana-Farber Cancer Institute, used a DNA microarray technology developed by Young to scan the entire genome of T cells and locate the genes controlled by Foxp3. There were roughly 30 genes found to be directly controlled by Foxp3 and one, called Ptpn22, showed a particularly strong affinity.

"This relation was striking because Ptpn22 is strongly associated with type 1 diabetes, rheumatoid arthritis, lupus and Graves' disease, but the gene had not been previously linked to regulatory T-cell function," says Alexander Marson, a MD/PhD student in the Young lab and lead author on the paper. "Discovering this correlation was a big moment for us. It verified that we were on the right track for identifying autoimmune related genes."

The researchers still don't know exactly how Foxp3 enables regulatory T cells to prevent autoimmunity. But the list of the genes that Foxp3 targets provides an initial map of the circuitry of these cells, which is important for understanding how they control a healthy immune response.

"Autoimmune diseases take a tremendous toll on human health, but on a strictly molecular level, autoimmunity is a black box," says Young. "When we discover the molecular mechanisms that drive these conditions, we can migrate from treating symptoms to developing treatments for the disease itself."

Source:Whitehead Institute for Biomedical Research

Related biology news :

1. Cracking the olfactory code in bees
2. Cracking the perception code
3. Cracking the genetic code for control of gene expression
4. Cracking the egg
5. Scientists identify genes responsible for black rot disease in vegetables
6. Uncovering sex-change secrets of black sea bass
7. Climate change creates dramatic decline in red-winged black bird population
8. New insight into autoimmune disease: Bacterial infections promote recognition of self-glycolipids
9. Immune system has evolved to prevent autoimmune disease
10. Dendritic cells offer new therapeutic target for drugs to treat MS and other autoimmune disease
11. Mystery solved: Golds power against autoimmune diseases defined

Post Your Comments:

(Date:10/26/2015)... , October 26, 2015 ... --> adds Biometrics Market ... 2021 as well as Emerging Biometrics ... reports to its collection of IT ... . --> ...
(Date:10/26/2015)... , Oct. 26, 2015  Delta ID Inc., ... authentication to mobile and PC devices, announced its ActiveIRIS® ... the arrows NX F-02H launched by NTT DOCOMO, INC ... F-02H is the second smartphone to include iris recognition ... in ARROWS NX F-04G in May 2015, world,s first ...
(Date:10/23/2015)... , October 23, 2015 ... announce a mobile plug and play integration of physiological ... tasks SensoMotoric Instruments (SMI) present a ... solutions for eye tracking and physiological data registration. It ... SMI Eye Tracking Glasses 2w and physiological signals ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; TSX: ... prospects remain fundamentally strong and highlights the following ... received DSMB recommendation to continue the ZoptEC Phase ... the final interim efficacy and safety data ... men with heavily pretreated castration- and Taxane-resistant prostate ...
(Date:11/24/2015)... , Nov. 24, 2015  Asia-Pacific (APAC) holds ... organisation (CRO) market. The trend of outsourcing to ... margins but higher volume share for the region ... scale, however, margins in the CRO industry will ... Market ( ), finds that the ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper ... unless it is bound to proteins, copper is also toxic to cells. With ... Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in the ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions leader SAP and ... to develop and pitch their BIG ideas to improve health and wellness in their ... votes to win the title of SAP's Teen Innovator, an all-expenses paid trip to ...
Breaking Biology Technology: