Navigation Links
Contrary to common wisdom, scientist discovers some mammals can smell objects under water

A Vanderbilt researcher has discovered that some stealthy mammals have been doing something heretofore thought impossible -- using the sense of smell under water.

The results of the research by Vanderbilt's Kenneth Catania, assistant professor of biology, were reported Dec. 21 in the science journal Nature. He became curious when he observed that a mole he was studying blew a lot of bubbles while swimming.

"This came as a total surprise because the common wisdom is that mammals can't smell underwater,' said Catania, who earlier this year won a $500,000 "genius grant" from the John D. and Catherine T. MacArthur Foundation.

"When mammals adapt to living in water, their sense of smell usually degenerates. The primary example is the cetaceans ?whales and dolphins ?many of which have lost their sense of smell."

Catania devised a series of experiments to determine whether the star-nosed mole and another small, semi-aquatic mammal - the water shrew - can smell objects underwater. Using a high-speed camera, he discovered how they do it. After observing that the moles were blowing bubbles out of their nostrils and then sucking them right back in, he determined they were exhaling and inhaling the bubbles rapidly, between five and 10 times per second. That is about the same rate as the sniffing behavior of comparably sized land mammals, like rats and mice. "Rats and mice don't sniff the way we do," Catania said. "They push air 'out-in out-in' in a fashion strikingly similar to what the star-nosed mole is doing, except that it is doing it under water."

Catania mounted a high-speed video camera so that it pointed up through the bottom of a glass tank. Then he stuck various objects on the bottom of the tank ?pieces of earthworm, small fish, insect cuticle and blobs of wax and silicon ?and observed the moles' behavior. He saw that, when the moles approached one of these targets, they would blow bubbles that came into contact with the t arget's surface and then were sucked back into the nostrils.

"Because the olfactory nerves in the nose are covered with mucous, odorant molecules are all water soluble," Catania said. "So, when these bubbles come into contact with an object, it is almost inevitable that odorant molecules will mix with the air and be drawn into the nose when the bubble is inhaled."

Just because the moles are getting whiffs of interesting odors underwater doesn't necessarily mean they smell them. So Catania devised some additional tests.

One of the complicating factors was the star-nosed mole's unusual nose, which is ringed by a star-shaped set of fleshy appendages. It uses its star like a super-sensitive set of fingers to identify objects it encounters while burrowing and swimming. So, at the same time it is sniffing at an object it is also fingering it with its star.

To determine if the mole can identify edible objects by sniffing alone, Catania created underwater scent trails leading to food and recorded how well the moles' could follow them. To keep the moles from using their tactile star, he put a grid-work between the animals and the scent trails. The openings in the grid were too small for the star appendages to squeeze through but large enough so the air bubbles could pass without difficulty.

These trials demonstrated that the moles could follow the scent trail by sniffing alone (without the tactile star).

Five moles were tested on earthworm scent trails and followed the trail to its reward with accuracies ranging from 75 percent to 100 percent accuracy. Two moles were tested with fish scent trails and followed them with 85 percent and 100 percent accuracy.

When the grid was replaced with a screen with openings too small for the air bubbles to pass through, however, the moles' performance dropped down to the level of chance ?the same as their performance with no-scent trails.

In order to see if this capa bility was limited to the star-nosed mole or if other small semi-aquatic mammals also have it, Catania captured some water shrews and began testing them. He found that they also exhibit this underwater sniffing behavior and can use it to follow underwater scent trails.

"Now, the question is, 'What other semi-aquatic mammals do this"'" Catania said. "Do animals like otters and seals do anything similar" Or is there a size limit and it only works for smaller mammals""

He hopes that publication of his paper will encourage researchers who are studying all kinds of semi-aquatic animals to take a closer look at how they are using their noses underwater.


Source:Vanderbilt University

Related biology news :

1. Recent breakthroughs in common adult leukemia highlighted in New England Journal of Medicine
2. U-M scientists find genes that control growth of common skin cancer
3. Iron exporter revealed that may explain common human disorder
4. Does vitamin C help prevent or treat the common cold? Maybe not, after all.
5. High-powered gene profiles provide clues to genes involved in common form of lung cancer
6. Doctors should stop prescribing antibiotics for the common cold, review advises
7. Most common lung cancers may begin in newly discovered cells
8. Ibruprofen and other commonly used painkillers for treating inflammation may increase the risk of heart attack
9. Toxic flood lifts lid on common urban pollution problem
10. Scientists use gene transfer technology and common virus to block neuropathic pain in animals
11. Retina adapts to seek the unexpected, ignore the commonplace
Post Your Comments:

(Date:11/17/2015)... LIVERMORE, Calif. , Nov. 17, 2015  Vigilant ... has joined its Board of Directors. ... Vigilant,s Board after recently retiring from the partnership at ... owning 107 companies with over $140 Billion in revenue.  ... performance improvement across all the TPG companies, from 1997 ...
(Date:11/12/2015)... LONDON , Nov. 11, 2015   ... and reliable analytical tools has been paving the ... and qualitative determination of discrete analytes in clinical, ... sensors are being predominantly used in medical applications, ... and environmental sectors due to continuous emphasis on ...
(Date:11/9/2015)... , Nov. 9, 2015  Synaptics Inc. (NASDAQ: ... today announced broader entry into the automotive market with ... match the pace of consumer electronics human interface innovation. ... are ideal for the automotive industry and will be ... Europe , Japan ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... -- Orexigen® Therapeutics, Inc. (Nasdaq: OREX ) today ... discussion at the Piper Jaffray 27th Annual Healthcare Conference ... is scheduled for Wednesday, December 2, at 8:00 a.m. ... will be available for 14 days after the event.  ... Corporate Communications and Business Development , BrewLife(858) 875-8629 ...
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf Association ... 2016 USGA Green Section Award. Presented annually since 1961, the USGA Green Section Award ... work with turfgrass. , Clarke, of Iselin, N.J., is an extension specialist ...
(Date:11/24/2015)... Mass. (PRWEB) , ... November 24, 2015 , ... ... to maintain healthy metabolism. But unless it is bound to proteins, copper is ... of Health (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic ...
(Date:11/24/2015)... --> --> ... Synthesis Market by Product & Services (Primer, Probe, Custom ... RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - ... is expected to reach USD 1,918.6 Million by 2020 ... of 10.1% during the forecast period. Browse ...
Breaking Biology Technology: