Navigation Links
Conceptualizing a cyborg

Investigators at the University of Pennsylvania School of Medicine describe the basis for developing a biological interface that could link a patient's nervous system to a thought-driven artificial limb. Their conceptual framework - which brings together years of spinal-cord injury research - is published in the January issue of Neurosurgery.

"We're at a junction now of developing a new approach for a brain-machine interface," says senior author Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair at Penn. "The nervous system will certainly rebel if you place hard or sharp electrodes into it to record signals. However, the nervous system can be tricked to accept an interface letting it do what it likes - assimilating new nerve cells into its own network".

To develop the next generation of prosthetics the idea is to use regions of undamaged nervous tissue to provide command signals to drive a device, such as an artificial limb. The challenge is for a prosthesis to perform naturally, relaying two-way communication with the patient's brain. For example, the patient's thoughts could convert nerve signals into movements of a prosthetic, while sensory stimuli, such as temperature or pressure provides feedback to adapt the movements.

The central feature of the proposed interface is the ability to create transplantable living nervous tissue already coupled to electrodes. Like an extension cord, of sorts, the non-electrode end of the lab-grown nervous tissue could integrate with a patient's nerve, relaying the signals to and from the electrode side, in turn connected to an electronic device.

This system may one day be able to return function to people who have been paralyzed by a spinal-cord injury, lost a limb, or in other ways. "Whether it is a prosthetic device or a disabled body function, the mind could regain control," says Smith.

To create the interface, the team u sed a newly developed process of stretch growth of nerve fibers called axons, previously pioneered in Smith's lab. Two adjacent plates of neurons are grown in a bioreactor. Axons sprout out to connect the neuron populations on each plate. The plates are then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system, until they reached a desired length.

For the interface, one of the plates is an electrical microchip. Because Smith and his team have shown that stretch-grown axons can transmit active electrical signals, they propose that the nervous-tissue interface - through the microchip - could detect and record real-time signals conducted down the nerve and stimulate the sensory signals back through the axons.

In another study, Smith and colleagues showed that these stretch-grown axons could grow when transplanted into a rat model of spinal-cord damage. The team is now is the midst of studies measuring neuronal electrical activity across newly engineered nerve bridges and the restoration of motor activity in experimental animals.
'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. NIAID Initiates Trial of Experimental Avian Flu Vaccine
2. Experimental shingles vaccine proves effective in nationwide study
3. Experimental vaccine protects nonhuman primates when given after exposure to Marburg virus
4. Experimental TB drug effective against resistant and latent mycobacterium tuberculosis
5. Experimental drug reverses key cognitive deficits, pathology in Alzheimers
6. Experimental RNA-based drug kills prostate cancer cells effectively and safely
7. Experimental vaccine protects lab animals against several strains of H5N1
8. Experimental vaccine protects mice against deadly 1918 flu virus
9. Experimental cancer drugs counter muscle deterioration seen in muscular dystrophy
10. Research advances quest for HIV-1 vaccine
11. A much-needed shot in the arm for HIV vaccine development

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
(Date:4/15/2016)... DUBLIN , April 15, 2016 ... of the,  "Global Gait Biometrics Market 2016-2020,"  report ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait ... CAGR of 13.98% during the period 2016-2020. ... movement angles, which can be used to compute ...
(Date:3/31/2016)... R.I. , March 31, 2016  Genomics firm ... of founding CEO, Barrett Bready , M.D., who ... members of the original technical leadership team, including Chief ... President of Product Development, Steve Nurnberg and Vice President ... returned to the company. Dr. Bready served ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... Bangkok, Thailand (PRWEB) , ... May 25, 2016 ... ... the participation of a Thai delegation at BIO 2016 in San Francisco. Located ... private sector will be available to answer questions and discuss the Thai biotechnology ...
(Date:5/25/2016)... ... 25, 2016 , ... Scientists at the University of Athens say they have ... be hampering the research that could lead to one good one. Surviving Mesothelioma has ... now. , The team evaluated 98 mesothelioma patients who got a ...
(Date:5/24/2016)... ... 24, 2016 , ... Cell therapies for a range of ... research at Worcester Polytechnic Institute (WPI) that yielded a newly patented method of ... The novel method, developed by WPI faculty members Raymond Page, PhD, professor of ...
(Date:5/23/2016)... ... ... blood donations in South Texas and across the nation is growing. , But according to ... are on the decline. In fact, donations across the country are at their lowest point ... the last four years alone. , There is no substitute for blood. , “We want ...
Breaking Biology Technology: