Navigation Links
Conceptualizing a cyborg

Investigators at the University of Pennsylvania School of Medicine describe the basis for developing a biological interface that could link a patient's nervous system to a thought-driven artificial limb. Their conceptual framework - which brings together years of spinal-cord injury research - is published in the January issue of Neurosurgery.

"We're at a junction now of developing a new approach for a brain-machine interface," says senior author Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair at Penn. "The nervous system will certainly rebel if you place hard or sharp electrodes into it to record signals. However, the nervous system can be tricked to accept an interface letting it do what it likes - assimilating new nerve cells into its own network".

To develop the next generation of prosthetics the idea is to use regions of undamaged nervous tissue to provide command signals to drive a device, such as an artificial limb. The challenge is for a prosthesis to perform naturally, relaying two-way communication with the patient's brain. For example, the patient's thoughts could convert nerve signals into movements of a prosthetic, while sensory stimuli, such as temperature or pressure provides feedback to adapt the movements.

The central feature of the proposed interface is the ability to create transplantable living nervous tissue already coupled to electrodes. Like an extension cord, of sorts, the non-electrode end of the lab-grown nervous tissue could integrate with a patient's nerve, relaying the signals to and from the electrode side, in turn connected to an electronic device.

This system may one day be able to return function to people who have been paralyzed by a spinal-cord injury, lost a limb, or in other ways. "Whether it is a prosthetic device or a disabled body function, the mind could regain control," says Smith.

To create the interface, the team u sed a newly developed process of stretch growth of nerve fibers called axons, previously pioneered in Smith's lab. Two adjacent plates of neurons are grown in a bioreactor. Axons sprout out to connect the neuron populations on each plate. The plates are then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system, until they reached a desired length.

For the interface, one of the plates is an electrical microchip. Because Smith and his team have shown that stretch-grown axons can transmit active electrical signals, they propose that the nervous-tissue interface - through the microchip - could detect and record real-time signals conducted down the nerve and stimulate the sensory signals back through the axons.

In another study, Smith and colleagues showed that these stretch-grown axons could grow when transplanted into a rat model of spinal-cord damage. The team is now is the midst of studies measuring neuronal electrical activity across newly engineered nerve bridges and the restoration of motor activity in experimental animals.

Source:University of Pennsylvania School of Medicine

Related biology news :

1. NIAID Initiates Trial of Experimental Avian Flu Vaccine
2. Experimental shingles vaccine proves effective in nationwide study
3. Experimental vaccine protects nonhuman primates when given after exposure to Marburg virus
4. Experimental TB drug effective against resistant and latent mycobacterium tuberculosis
5. Experimental drug reverses key cognitive deficits, pathology in Alzheimers
6. Experimental RNA-based drug kills prostate cancer cells effectively and safely
7. Experimental vaccine protects lab animals against several strains of H5N1
8. Experimental vaccine protects mice against deadly 1918 flu virus
9. Experimental cancer drugs counter muscle deterioration seen in muscular dystrophy
10. Research advances quest for HIV-1 vaccine
11. A much-needed shot in the arm for HIV vaccine development

Post Your Comments:

(Date:11/11/2015)... MedNet Solutions , an innovative SaaS-based eClinical technology company that ... announce that it will be a Sponsor of the ... held November 17-19 in Hamburg , Germany.  ... iMedNet , MedNet,s easy-to-use, proven and affordable eClinical ... able to deliver time and cost savings of up to ...
(Date:11/9/2015)... JOSE, Calif. , Nov. 9, 2015  Synaptics ... human interface solutions, today announced broader entry into the ... vehicle-specific solutions that match the pace of consumer electronics ... and biometric sensors are ideal for the automotive industry ... vehicle. Europe , ...
(Date:10/29/2015)... 2015  The J. Craig Venter Institute (JCVI) policy ... and Biosecurity: Lessons Learned and Options for the Future," ... Human Services guidance for synthetic biology providers has worked ... --> --> Synthetic biology promises ... to pose unique biosecurity threats. It now is easier ...
Breaking Biology News(10 mins):
(Date:11/26/2015)... , November 26, 2015 ... --> Accutest Research Laboratories, a ... Research Organization (CRO), has formed a ... Center - Temple Health for joint ... ,     (Photo: ) , ...
(Date:11/25/2015)... 25, 2015 2 nouvelles études permettent ... les différences entre les souches bactériennes retrouvées dans la ... des êtres humains . Ces recherches  ouvrent une nouvelle ... prise en charge efficace de l,un des problèmes ... chats .    --> 2 nouvelles études ...
(Date:11/25/2015)... , Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris ... that its business and prospects remain fundamentally strong ... Zoptrex™ (zoptarelin doxorubicin) recently received DSMB recommendation to ... completion following review of the final interim efficacy ... 2 Primary Endpoint in men with heavily pretreated ...
(Date:11/25/2015)... ... 25, 2015 , ... Jessica Richman and Zachary Apte, founders ... initial angel funding process. Now, they are paying it forward to other microbiome ... investments in the microbiome space. In this, they join other successful entrepreneurs-turned-angels ...
Breaking Biology Technology: