Navigation Links
Computer models aid understanding of antibody-dependent enhancement in spread of dengue fever

Evolutionary trade-off exists between advantage and disadvantage

Some viruses' ability to exploit the human body's own defenses to increase their replication may be both a blessing and curse, according to the findings of a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. The process is known as antibody-dependent enhancement. Scientists believe antibody-dependent enhancement may allow the dengue virus to grow more rapidly in people who were previously infected and have partial but incomplete immunity to the virus. Enhanced virus replication triggers a more deadly, hemorrhagic form of the disease.

A study published in the online edition of Proceedings of the National Academy of Sciences suggests that antibody-dependent enhancement offers an evolutionary trade-off between advantage and disadvantage for the dengue virus. The findings could one day lead to new strategies for developing and deploying vaccines.

Using computational models based on epidemic theory, the researchers examined the dynamic role antibody-dependent enhancement plays in the spread of dengue viruses. They concluded that when antibody-dependent enhancement triggered small increases in transmission it gave viruses an edge over other co-circulating dengue viruses that did not experience enhancement. Counter-intuitively, larger increases in transmission resulted in more extinctions of the enhanced virus.

"Dengue dynamics are similar to predator-prey systems in ecology. Antibody-dependent enhancement makes a virus a better predator. But there comes a point where the predator gets so good it runs out of prey," explained lead author Derek Cummings, a research associate in the Department of International Health at the Bloomberg School. "We found that antibody-dependent enhancement helps the dengue virus spread faster, but there are limits to how much the virus can exploit this strategy."

According to the computer simulations, anti body-dependent enhancement creates oscillations, or "booms and busts" in the incidence of dengue virus infections. Enhancement results in larger booms, but also deeper troughs in incidence, which lead to extinction. Although the computer models were specifically developed for dengue, the researchers believe the results could apply to any disease in which partial immunity increases pathogen replication rates.

"Experimental dengue vaccines will soon be entering into large-scale clinical trials. We must understand the processes that affect transmission--such as antibody-dependent enhancement--to design optimal dengue vaccination strategies," said Donald S. Burke, MD, senior author of the study and professor in the Department of International Health at the Bloomberg School.

"Dynamic effects of antibody-dependent enhancement on the fitness of viruses" was written by Derek A. T. Cummings, Ira B. Schwartz, Lora Billings, Leah B. Shaw and Donald S. Burke. Cummings and Burke are with the Johns Hopkins Bloomberg School of Public Health. Schwartz and Shaw are with the Naval Research Laboratory, Washington, D.C., and Billings is with Montclair State University.


'"/>

Source:Johns Hopkins University Bloomberg School of Public Health


Related biology news :

1. Computers to be used to find blueprint for new influenza drug
2. Large-scale Computer Simulations Reveal New Insights Into Antibiotic Resistance
3. Computers close in on protein structure prediction
4. Computer modeling reveals hidden conversations within cells
5. Computer-chemistry yields new insight into a puzzle of cell division
6. Computers to save unique type of American red squirrel
7. Computer simulation hints at new HIV drug target
8. Computer scientist sorts out confusable drug names
9. Computer-based games enhance mental function in patients with Alzheimers
10. Computer scientists unravel language of surgery
11. Computer with brain connections changing quality of life of paralyzed
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/2/2016)... Feb. 2, 2016  Based on its recent ... Sullivan recognizes US-based Intelligent Retinal Imaging Systems (IRIS) ... Award for New Product Innovation. IRIS, a prominent ... North America , is poised to set ... diabetic retinopathy market. The IRIS technology presents superior ...
(Date:2/1/2016)... -- Wocket® smart wallet ( www.wocketwallet.com ) announces the launch of a new ... Las Vegas , where Joey appeared at the ... Las Vegas , where Joey appeared at the Wocket booth to ... was filmed at the Consumer Electronics Show (CES2016) in Las ... and greet fans. --> --> ...
(Date:1/25/2016)... 2016   Unisys Corporation (NYSE: UIS ) today ... (JFK) International Airport, New York City , to ... attempting to enter the United States using ... pilot testing of the system at Dulles last year. ... JFK during January 2016. --> pilot testing of ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... ... February 09, 2016 , ... Creation Technologies, ... of the Highest Overall Customer Rating Award from Circuits Assembly , today announced ... across the USA, Canada, Mexico and China. , The EMS provider, known in ...
(Date:2/9/2016)... , Feb. 9, 2016  Regenicin, Inc. (OTC ... specializing in the development and commercialization of regenerative ... tissues and organs, recently reported the Company,s operating ... quarter of 2016. Lonza America , ... 2015 fiscal year in the process of consummating ...
(Date:2/9/2016)... ... February 08, 2016 , ... ... announced today the launch of its revamped and improved website. In an on-going ... solutions, the redesigned website will better communicate how the company designs and delivers ...
(Date:2/9/2016)... ... 2016 , ... Tunnell Consulting, Inc. announced that Frédéric Lefebvre has joined the ... acquiring new accounts and work closely with existing Tunnell clients throughout Europe to ensure ... European clients more than 15 years of experience in the pharmaceutical industry, a thorough ...
Breaking Biology Technology: