Navigation Links
Comprehensive model is first to map protein folding at atomic level

Scientists at Harvard University have developed a computer model that, for the first time, can fully map and predict how small proteins fold into three-dimensional, biologically active shapes. The work could help researchers better understand the abnormal protein aggregation underlying some devastating diseases, as well as how natural proteins evolved and how proteins recognize correct biochemical partners within living cells.

The technique, which can track protein folding for some 10 microseconds -- about as long as some proteins take to assume their biologically stable configuration, and at least a thousand times longer than previous methods -- is described this week in the Proceedings of the National Academy of Sciences.

"For years, a sizable army of scientists has been working toward better understanding how proteins fold," says co-author Eugene I. Shakhnovich, professor of chemistry and chemical biology in Harvard's Faculty of Arts and Sciences. "One of the great problems in science has been deciphering how amino acid sequence -- a protein's primary structure -- also determines its three-dimensional structure, and through that its biological function. Our paper provides a first solution to the folding problem, for small proteins, at an atomic level of detail."

Fiendishly intricate, protein folding is crucial to the chemistry of life. Each of the body's 20 amino acids, the building blocks of proteins, is attracted or repulsed by water; it's largely these affinities that drive the contorting of proteins into distinctive three-dimensional shapes within the watery confines of a cell. The split-second folding of gangly protein chains into tight three-dimensional shapes has broad implications for the growing number of disorders believed to result from misfolded proteins or parts of proteins, most notably neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.

The model developed by Shakhnovich and colleagues fait hfully describes and catalogs countless interactions between the individual atoms that comprise proteins. In so doing, it essentially predicts, given a string of amino acids, how the resulting protein will fold -- the first computer model to fully replicate folding of a protein as happens in nature. In more than 4,000 simulations conducted by the researchers, the computer model consistently predicted folded structures nearly identical to those that have been observed experimentally.

"This work should open new vistas in protein engineering, allowing rational control of not only protein folding, but also the design of pathways that lead to these folds," says Shakhnovich, who has studied protein folding for nearly two decades. "We are also using these techniques to better understand two fundamental biological questions: How have natural proteins evolved, and how do proteins interact in living cells to recognize correct partners versus promiscuous ones?"
'"/>

Source:Harvard University


Related biology news :

1. Comprehensive biodefense text published
2. Affymetrix and ParAllele Launch Industrys Most Comprehensive Product Line for Targeted Genotyping
3. Scientists identify new model Of NK cell development
4. Genrate: a generative model that finds and scores new genes and exons in genomic microarray data
5. Molecular models advance the fight against malaria
6. NYU and MSKCC research provides model for understanding chemically induced cancer initiation
7. Genetic therapy reverses nervous system damage in animal model of inherited human disease
8. Disease progression model of pancreatic cancer developed by Penn researchers
9. A new way to share models of biological systems
10. Understanding biases in epidemic models important when making public health predictions
11. Climate model links higher temperatures to prehistoric extinction

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/26/2017)... 2017  Securus Technologies, a leading provider of ... safety, investigation, corrections and monitoring, announces the appointment ... "Too often, too many offenders return to ... are trying to tackle this ongoing problem and ... family members. While significant steps are underway, Securus continues ...
(Date:2/22/2017)... 2017 With the biometrics market to ... four technologies that innovative and agile startups must ... in the changing competitive landscape: multifactor authentication (MFA), ... "Companies can no longer afford to ... Dimitrios Pavlakis , Industry Analyst at ABI ...
(Date:2/21/2017)... February 21, 2017 Der weltweite ... wachsen. Nach einem Gespräch mit mehr als 50 Vertretern aus ... zu überwinden gilt, um diese Prognose zu realisieren. ... ... Mobilisierung der finanziellen Mittel für die Biobank, die Implementierung ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... MCLEAN, Va. , March 27, 2017  Perthera,s ... Lombardi Cancer Center, Subha Madhavan , Ph.D., will ... 2017 Joint Summits Panels. On Monday, March 27, 2017, ... Precision Oncology Data More Usable for Research and Care" ... Tuesday, March 28, 2017, she will be a participant ...
(Date:3/27/2017)... MA (PRWEB) , ... March 27, 2017 , ... ... a method to engineer scalable and customizable vascular grafts in JoVE’s Video Journal, ... may lead to new and improved ways of treating coronary artery disease (CAD). ...
(Date:3/27/2017)... , March 27, 2017 Neurotrope, ... novel therapies for neurodegenerative diseases, including Alzheimer,s disease, ... its application to list the Company,s common stock ... by The NASDAQ Stock Market, a unit of ... listing, Neurotrope will ring the Opening Bell at the ...
(Date:3/24/2017)... Mar. 24, 2017 Research and Markets has ... Research - Global Strategic Business Report" report to their offering. ... This report ... in US$ Million. Annual estimates and forecasts are provided for the ... primary and secondary research. The report profiles 25 ...
Breaking Biology Technology: