Navigation Links
Common algae helps illustrate mammalian brain electrical circuitry

Mice whose brain cells respond to a flash of light are providing insight into the complexities of the sense of smell and may ultimately yield a better understanding of how the human brain works.

Investigators at Duke University Medical Center and the Howard Hughes Medical Institute have engineered a strain of mice whose olfactory brain cells "fire" when exposed to light. This was accomplished by inserting into the cells a gene naturally present in green algae that "turns on" when exposed to light and enables the algae to swim toward the light.

When the researchers shined light on the areas of the brain involved in smell, they could follow in real time what areas of the brain were reacting and where the signals went by seeing differences in electrical current that indicated the presence of the algae gene.

"This work provides a new method in live animals that will define the experimental approach for studying of mammalian neural circuitry in the coming decade," said Michael Ehlers, M.D., Ph.D., a Duke neurobiologist and Howard Hughes Medical Institute investigator.

The researchers published their findings in the April 19, 2007, issue of the journal Neuron. The research was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

"This mouse model and its future variants mark the first use of genetically produced light activation in the study of the intact mammalian brain, and we believe this advance in nerve circuit mapping will be to neurobiology what microarray technology has been to genomic science -- a fundamental breakthrough," Ehlers said. Microarray technology enables scientists to screen thousands of genes at once to look for clusters of genes that may be involved in disease.

Although there are many approaches to studying how different nerve cells in the brain react to stimuli from the environment, this mouse model is the first to be able to provide real-time mapping of bra in circuitry in a living, intact mammal, the researchers said.

The light-producing gene inserted into the mice is taken from the water-dwelling microorganism Chlamydomonas reinhardtii, which, as a plant, needs sunlight for photosynthesis. Tiny hairlike structures along the outside of the algae propel it toward the light. These structures are controlled by channelrhodopsin-2, a so-called "ion channel," which reacts to light by stimulating movement toward it.

While researchers previously have used channelrhodopsin-2 in a variety of experiments in cell culture, the Duke experiments mark the first time the gene controlling its action has been inserted into the genetic makeup of a living mammal, the researchers said. The mice were created by Ehlers' colleague Guoping Feng, Ph.D., assistant professor of neurobiology.

The researchers decided to test the mice first on the sense of smell, since the olfactory system not only involves complex neural circuits but also has a behavioral component.

"The perception of smell is quite complex," Ehlers said. "The brain can decode thousands of smells that enter the nose, discriminating even the slightest scent and often conjuring up vivid memories. So we wanted to know how the brain decodes the presence of these chemicals in the air and turn them into a perception. It's still quite mysterious."

Ehlers said that even though these experiments shed new light on the inner workings of the olfactory system, their greatest significance is that they provided proof of principle that this new model can be used to study a wide variety of questions involving the brain.

"There are a lot of tools that work well in simpler systems or in isolated nerve cells, but the findings are often difficult to translate into an intact mammalian brain," Ehlers said. "This new model opens up whole new avenues for study. We may reach a future where brain injuries, spinal cord damage, neuron loss in Alzheime r’s disease, or even depression are treated by fiber optics delivering light to genetically defined populations of nerve cells.
'"/>

Source:Duke University Medical Center


Related biology news :

1. Its not all genetic: Common epigenetic problem doubles cancer risk in mice
2. Harmful Bacterium Commonly Found in Poultry May Survive Refrigeration and Frozen Storage Combined
3. Men Estimate Mens Risks Of Common Disorders Higher Than Women Do, And Vice Versa
4. Use of Antibiotics for Acne May Increase Risk of Common Illness
5. Common viruses may cause cancer
6. Common alternative treatment for liver disease is found to be ineffective
7. Common molecular signature identified in solid tumors
8. Common bacteria pirate natural mechanism to get inside cells
9. Commonly used antidepressants may also affect human immune system
10. Common practices at petting zoos put visitors at risk
11. Common enzyme is a key player in DNA repair

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
(Date:4/24/2017)... , April 24, 2017 ... and partner with  Identity Strategy Partners, LLP (IdSP) ... "With or without President Trump,s March 6, 2017 ... Terrorist Entry , refugee vetting can be instilled with ... resettlement. (Right now, all refugee applications are suspended ...
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... May 23, 2017 , ... Genedata, a ... anniversary, marking the occasion with a strong presence at Bio-IT World Conference & ... further extends an invitation to all attendees to view posters on the ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... Vice President of Clinical Operations. She brings years of expertise in establishing and ... her professional foundation as a licensed occupational therapist, through a variety of leadership ...
(Date:5/22/2017)... , ... May 22, 2017 , ... ... with other leaders of the Maryland Biohealth community in developing and issuing recommendations ... Top 3 U.S. BioHealth Innovation Hub by 2023. , The ...
(Date:5/19/2017)... ... May 19, 2017 , ... ... Program. Academic researchers with technologies ripe for commercialization, and who are affiliated ... Delaware, are encouraged to submit proposals. QED, now in its tenth round, is ...
Breaking Biology Technology: