Navigation Links
Combination therapy boosts effectiveness of telomere-directed cancer cell death

Sometimes a potential target for a drug seems very promising on paper; things are often very different in reality. Its the case of telomerase inhibitors to treat cancer; they are supposed to strip the "immortal" (able to divide indefinitely) aspect of cancer cells. Yet, something in the cell seems to block their function, preventing them to inhibit completely the telomerase. What to do then? Scrap the project? Look for something else? Hell no! Look out for whats stopping the drug! Perseverance is sometimes worth it, as we can see. A new research study published in the January issue of Cancer Cell provides exciting new information about how to boost the effectiveness of a promising cancer treatment that targets telomeres in an attempt to interfere with the ability of a cancer cell to continuously divide.

Telomeres are DNA sequences found at the ends of chromosomes that play a key role in controlling the life span of cells. With every cell division, telomeres get a bit shorter until eventually they become so short that the enzymes that copy DNA for cell division no longer work properly and the cell stops dividing. In a sense, telomeres function as a kind of counting mechanism that regulates how many times a cell can divide. In contrast to normal cells, cancer cells divide continuously and uncontrollably. Scientists know that cancer cells produce an enzyme, called telomerase, which prevents telomeres from getting too short so cells can keep dividing. Telomerase is not used by healthy cells, and has been identified as a logical target for anticancer therapeutics. However, recent studies indicate that for this therapy to be effective, telomeres must be in a critically short state, requiring an extended treatment duration that can lead to drug resistance and other problems. Dr. Hiroyuki Seimiya from the Japanese Foundation for Cancer Research in Tokyo and colleagues examined what happens to cancer cells when telomerase inhib ition is combined with inhibition of an enzyme called tankyrase 1 that is involved in making telomeres accessible to telomerase. The researchers found that both tankyrase 1 activity and telomere shortening decrease the effects of telomerase inhibitors. Importantly, tankyrase inhibition enhanced telomere shortening upon treatment with a telomerase inhibitor and accelerated cancer cell death. "This study provides insight into strategies for telomere-based molecular cancer therapeutics. We expect that inhibition of tankyrase 1 will compensate for incomplete inhibition of telomerase. Consequently, this strategy would shorten the time period of drug treatment that is required for the onset of telomere crisis and reduce the potential risk of acquired drug resistance, " writes Dr. Seimiya. Hiroyuki Seimiya, Yukiko Muramatsu, Tomokazu Ohishi, and Takashi Tsuruo: "Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics".
'"/>

Source:Eurekalert


Related biology news :

1. Combination therapy leads to partial recovery from spinal cord injury in rats
2. Combination therapy improves AIDS-related lymphoma outcome
3. Combination therapy with a monocloncal antibody and a vaccine leads to tumor rejection
4. Combination therapy shows promising results in patients with advanced lung cancer
5. Adding Radiation Therapy To Chemotherapy Improves Survival In Patients With High-risk Breast Cancer
6. Columbia research lifts major hurdle to gene therapy for cancer
7. Gene therapy converts dead bone graft to new, living tissue
8. Study identifies predictors of HIV drug resistance in patients beginning triple therapy
9. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
10. Muscle-targeted gene therapy reverses rare muscular dystrophy in mice
11. New therapy for HIV/AIDS eliminates needles and excessive toxicity

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/2/2017)... Summary This report provides all the ... interests and activities since 2010. ... Read the full report: http://www.reportlinker.com/p03605615-summary/view-report.html ... report provides an in-depth insight into the partnering activity of ... On demand company reports are prepared upon purchase to ensure ...
(Date:3/2/2017)... 2, 2017 Who risk to be deprived ... the full report: https://www.reportbuyer.com/product/4313699/ WILL APPLE ... FIELD? Fingerprint sensors using capacitive technology represent a ... vendor Idex forecasts an increase of 360% of the ... of the fingerprint sensor market between 2014 and 2017 ...
(Date:3/1/2017)... Mass. , March 1, 2017  Aware, Inc. ... services, announced that Richard P. Moberg has ... and co-President and Chief Financial Officer and Treasurer of ... continue to serve as a member of the Board ... Russell , Aware,s co-Chief Executive Officer and co-President, General ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... ... March 28, 2017 , ... Benchworks ... March 22 in Philadelphia. The event was offered by the Chamber of Commerce ... featured breakout groups and interaction with speakers who are leaders in their ...
(Date:3/28/2017)... LONDON , March 28, 2017 ... to better understand Enzo Biochem and its partnering interests and ... since 2010 report provides an in-depth insight into the partnering ... On demand company reports are prepared upon purchase ... and company data. The report will be delivered ...
(Date:3/28/2017)... -- The National Pharmaceutical Council (NPC) today announced that Ipsen ... as its newest member. David Cox , PhD, ... America ), will serve as his company,s representative ... to have Ipsen and Dr. Cox join NPC as ... welcome their insights in helping us identify and address ...
(Date:3/28/2017)... , March 28, 2017 Biostage, ... biotechnology company developing bioengineered organ implants to treat cancers ... trachea, today announced that Jim McGorry, CEO ... and BioEngineering panel at the MassBio 2017 ... 2:30 PM ET in Cambrige, Massachussetts. The 3D ...
Breaking Biology Technology: