Navigation Links
Columbia research lifts major hurdle to gene therapy for cancer

Researchers at Columbia University Medical Center have discovered a way to overcome one of the major hurdles in gene therapy for cancer: its tendency to kill normal cells in the process of eradicating cancer cells. In a new study published in the Jan. 25 issue of the Proceedings of the National Academy of Sciences (PNAS), the researchers demonstrated that the technique works by incorporating it into a specially designed virus. The virus eradicated prostate cancer cells in the lab and in animals while leaving normal cells unscathed.

Gene therapy based on the new technique should also be effective for a wide range of tumors - such as ovarian, breast, brain (glioma), skin (melanoma) and colon cancer - because the virus is constructed to exploit a characteristic of all solid cancers. "What's exciting is we may now be able to design a therapy that will seek out and destroy only cancer cells," said the study's senior author, Paul B. Fisher, Ph.D., professor of clinical pathology and Michael and Stella Chernow Urological Cancer Research Scientist at Columbia University Medical Center. "We hope it will be particularly powerful in eradicating metastases that we can't see and that can't be eliminated by surgery or radiation. Gene therapy, especially for cancer, is really starting to make a comeback." The virus's selectivity for cancer cells is based on two molecules called PEA-3 and AP-1 that, the researchers found, are usually abundant inside cancer cells. Both of the molecules flip a switch (called PEG) that turns on the production of a cancer-inhibiting protein uniquely in tumor cells. The researchers say the PEG switch can be exploited to produce gene therapies that will only kill cancer cells even if the therapy enters normal cells. As an example, the researchers constructed an adenovirus that carries the PEG switch and a toxic protein. The switch and the protein were connected to each other so that the deadly protein is only unleashed inside cancer cells when the switch is flipped on by PEA-3 or AP-1. When added to a mix of normal and prostrate cancer cells, the virus entered both but only produced the toxic protein inside the cancer cells. All the prostrate cancer cells died while the normal cells were unaffected. The same virus also selectively killed human cancer cells from melanoma and ovarian, breast, and glioma (brain) tumors. Dr. Fisher's team is now altering the virus and developing additional viruses based on the PEG switch for use in clinical trials with patients. Other investigators associated with the PNAS study include Drs. Zao-zhong Su (research scientist), Devanand Sarkar (associate research scientist) and Luni Emdad (postdoctoral research scientist) in Dr. Fisher's group; Drs. Gregory J. Duigou (associate research scientist) and C. S. Hamish Young (professor) in the Department of Microbiology (Columbia University Medical Center); and Dr. Joy Ware (professor), Mr. Aaron Randolph (graduate student) and Dr. Kristoffer Valerie (professor) at Virginia Commonwealth University, Richmond, VA.
'"/>

Source:Eurekalert


Related biology news :

1. Columbia study shows widely used artery clearing device does not help patients during heart attack
2. Columbia scientists develop cancer terminator viruses
3. Contaminants linked to sturgeon decline in Columbia river
4. Columbia University licenses next-generation DNA sequencing technology
5. New bird discovered on unexplored Columbian mountain
6. Columbia scientists determine 3-dimensional structure of cells fuel gauge
7. U of M researcher examines newly emerging deadly disease
8. NYU researchers simulate molecular biological clock
9. First atlas of key brain genes could speed research on cancer, neurological diseases
10. New research questions basic tenet of neuron function
11. Vital step in cellular migration described by UCSD medical researchers

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/10/2017)... Feb 10, 2017 Research and ... "Personalized Medicine - Scientific and Commercial Aspects" to ... ... Diagnosis is integrated with therapy for selection of treatment as ... detection and prevention of disease in modern medicine. Biochip/microarray technologies ...
(Date:2/8/2017)... YORK , Feb. 8, 2017 About ... individual,s voice to match it against a stored ... such as pitch, cadence, and tone are compared ... require minimal hardware installation, as most PCs already ... for different transactions. Voice recognition biometrics are most ...
(Date:2/8/2017)... Report Highlights ... The global synthetic-biology market reached nearly $3.9 billion in ... a compound annual growth rate (CAGR) of 24.0% through 2021. ... for synthetic biology. - Analyses of global market trends, with ... annual growth rates (CAGRs) through 2021. - Coverage of core ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... March 23, 2017 , ... AxioMed president, Jake Lubinski, describes ... characteristics when deformed, which is identical to how the human discs work to ... and return to its natural state along a hysteresis curve, exactly like a ...
(Date:3/23/2017)... -- GlobeImmune, Inc. today announced it has entered into a ... of its common stock to NantCell, Inc., a member ... sale of its common stock, NantCell has agreed to ... 200,000 shares, an estimated $2.0 million in value, of ... to enter into this strategic agreement with NantCell," said ...
(Date:3/23/2017)... York , March 23, 2017 According ... plasma products and derivatives market is fragmented due to the presence of ... such as Proliant, Thermo Fisher , and Sigma-Aldrich, compete with ... these three companies, collectively, held more than 76% of this market ... As ...
(Date:3/22/2017)... ... March 22, 2017 , ... Researchers face a ... lab samples to full-size tissues, bones, even whole organs to implant in people ... delivers blood deep into the developing tissue. , Current bioengineering techniques, including ...
Breaking Biology Technology: