Navigation Links
Clue found to Epstein-Barr virus' ability to form and sustain tumors

Researchers at the University of Wisconsin School of Medicine and Public Health (SMPH) have found a viral target that opens the door for the development of drugs to destroy tumors caused by Epstein-Barr virus (EBV).

The finding, published in the Sept. 4 Proceedings of the National Academy of Sciences Online, identifies the activity of a critical segment of a viral protein required to sustain EBV-related tumors. The researchers found that when they blocked this activity, the virus life cycle was broken.

Often linked to infectious mononucleosis, EBV also causes cancers that kill 100,000 people around the world each year. The virus, which infects the immune system's B cells and causes them to grow, is directly responsible for Burkitt's lymphoma, an often-fatal malignancy affecting thousands of African children annually. It is also causally associated with at least four other kinds of human cancers, including Hodgkin's lymphomas, lymphomas in AIDS patients and organ transplant recipients as well as nasopharyngeal carcinomas.

The SMPH researchers, based at the McArdle Laboratory for Cancer Research, focused on a viral protein they had previously found to be necessary to keeping Burkitt's lymphoma cells alive and growing in culture. The protein, called Epstein-Barr nuclear antigen 1 (EBNA-1), is the only protein the virus makes in all EBV-positive tumors.

"We've been trying to identify specific functions of EBNA-1 that we could target therapeutically," says Bill Sugden, professor of oncology who has studied EBV for more than 30 years. "Our goal is to develop a successful anti-viral, anti-tumor therapy for all EBV-positive tumors."

In the current study, Sugden and his colleague of 20 years, Wolfgang Hammerschmidt, now based at the German National Research Center for Environment and Health, designed genetic experiments to mutate various segments of the 640 amino acids that make up the EBNA-1 protein, which is one of about 100 proteins EBV encodes. They then infected human B cells with EBVs carrying various mutant EBNA-1s.

The analysis showed that one 25-amino acid segment within EBNA-1 was responsible for the regulation of viral gene transcription, the first step in the process by which a gene's coded information is converted first into RNA and then into protein.

Mutating the unique segment of amino acids prevented EBNA-1 from transforming resting B cells into proliferating cells.

Under normal conditions, a cellular protein binds this 25-amino acid segment of EBNA-1, allowing transcription of viral and cellular genes regulated by EBNA-1 to occur. Hammerschmidt and Sugden are now trying to identify the cellular protein.

"If we can identify this protein, it will be easier for us to develop assays to screen for small molecules that will compete with the protein in binding to EBNA-1," Sugden says. "By preventing the cellular protein from binding with the segment, EBNA-1 will not be able to carry out its function and the tumor cells it sustains will die."

The goal, which Sugden expects is achievable, is to end up with a drug that kills only EBV-positive tumor cells and doesn't harm other tissues in the body.


'"/>

Source:University of Wisconsin-Madison


Related biology news :

1. New component of the brakes on nerve regeneration found
2. Strongest proof yet found for prion hypothesis
3. A puzzle piece found in unraveling the wiring of the brain
4. New World founders small in number
5. Norovirus found to cause travelers diarrhea
6. Pair of cancer genes found to drive both cell migration and division
7. Alien woodwasp, threat to US pine trees, found in N.Y.
8. Achilles heel of the herpes virus possibly found
9. Purdue scientists may have found key to halting spinal cord damage
10. Unexpected lock and key mechanism found for the assembly of tumor blood vessels
11. New protein vital for immune response is found in surprise location
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
(Date:5/6/2017)... , May 5, 2017 ... just announced a new breakthrough in biometric authentication ... exploits quantum mechanical properties to perform biometric authentication. These ... smart semiconductor material created by Ram Group and ... finance, entertainment, transportation, supply chains and security. Ram ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... DuPont Pioneer and recently formed CasZyme, ... into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The goal ... editing across all applications. , Under the terms of the agreement, Pioneer will ...
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... partners with the pharmaceutical and biotechnology industries to improve patient outcomes and quality ... Several trends in analytical testing are being attributed to new regulatory requirements for ...
(Date:10/11/2017)... LINDA, CA (PRWEB) , ... October 11, 2017 ... ... to upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding ... (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... ... 2017 , ... Proscia Inc ., a data solutions ... “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, Managing ... how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
Breaking Biology Technology: