Navigation Links
Circles Of DNA Might Help Predict Success Of Stem Cell Transplantation

Measuring the quantity of a certain type of immune cell DNA in the blood could help physicians predict whether a bone marrow stem cell transplant will successfully restore a population of infection-fighting cells called T lymphocytes in a child. This research, by investigators at St. Jude Children's Research Hospital, is published in the journal Blood.

This finding could help physicians predict whether children receiving such a transplant will experience either failure or significant delay in the reconstitution of the T cell population. Moreover, if the transplant is successful, T cells arising from donated stem cells will be available to launch attacks on the patient's cancer cells--the so-called "graft-versus-tumor" response. This will further improve the patient's outcome following initial therapy (chemotherapy, irradiation and surgery).

Physicians sometimes treat patients with stem cell transplants as part of therapy for a variety of diseases such as leukemia or sickle cell disease. In these cases physicians eliminate the patients' own stem cells that produce cancerous white cells or faulty red cells and replace them with healthy stem cells from donors. If the transplants succeed, the donated stem cells repopulate the blood with healthy red and white cells.

The St. Jude team showed that the more copies of tiny rings of DNA called signal-joint TRECs (sjTRECs) there are in a child's blood, the more likely it is that the patient's thymus gland can act as an efficient factory where stem cells become T cells. The thymus is an immune system organ behind the breastbone that processes immature "precursor" immune cells into specialized T cells.

T lymphocytes are specialized immune cells carrying proteins called receptors on their surface. The target that a T cell recognizes and attacks depends on the makeup of its receptor, which is constructed of protein building blocks. Each protein building block is coded by a specific gene. sjTRECs form during a "mix-and-match" rearrangement of these genes into any one of countless combinations. The rings represent sections of DNA cut out of chromosomes during the mixing and matching of genes that are chosen to build a particular receptor. Each T cell uses the resulting combination of genes to make a receptor that lets the cell recognize a specific target. When stimulated to multiply, each of those cells produce an army of immune cells against their designated target.

Specific infectious organisms or other foreign substances stimulate T cells to divide and multiply in order to form an attacking army. However, the sjTRECs don't multiply when the original T cells divide and multiply. Instead, the more T cells that are produced in the blood as the parent cells containing sjTRECs divide and produce daughter cells, the more the sjTRECs in those original T cells get "diluted" within the growing army of these immune cells. This proves that high levels of sjTREC in blood means that a large number of stem cells have been converted to parent T cells--each of which targets a specific foreign substance, according to Rupert Handgretinger, M.D., Ph.D., director of Stem Cell Transplantation at St. Jude and co-director of the Transplantation and Gene Therapy Program.

"sjTRECs appear only after the gene shuffling has successfully occurred in the parent cell," Handgretinger said. "So if we extract large numbers of sjTRECs from T cells in the blood of a patient about to undergo a stem cell transplant, that's a good sign. It means the patient's thymus is a good T-cell factory."

Handgretinger is the senior author of the Blood report.

The St. Jude team tested levels of sjTREC in the blood of 77 healthy donors who provided stem cells to their siblings. The researchers also tested 244 samples from 26 of the recipients themselves. The recipients had been treated for either white cell cancers (e.g., acute lymphoblastic leukemia) or red cell diseases (e.g., s ickle cell disease).

Because blood from the normal, healthy donors contained 1,200 to 155,000 sjTREC copies per milliliter of blood, the investigators chose 1,200 as the lowest end of the normal range for sjTRECs.

The team found that transplant recipients who had more than 1,200 copies of sjTREC in each milliliter of their blood before transplantation were more likely than patients with fewer copies to experience successful reconstitutions of their T cell populations. In patients with fewer than 1,200 copies per milliliter, the transplantation was likely either to fail or be significantly slow in reconstructing the T cell population.

"This is the first demonstration that high levels of sjTREC in a potential stem cell recipient can predict that their thymus will successfully reconstitute their T cell population using donated stem cells," said Xiaohua Chen, Ph.D., first author of the Blood article. "This kind of information should help physicians improve their ability to manage individual patients by predicting how they will respond to stem cell transplants."

Other authors of this study are Raymond Barfield, Ely Benaim, Wing Leung, James Knowles, Dawn Lawrence, Mario Otto, Sheila A. Shurtleff, Geoffrey A. M. Neale, Frederick G. Behm and Victoria Turner.


This work was supported in part by the Assisi Foundation of Memphis and ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit


Source:St. Jude Children鈥檚 Research Hospital

Related biology news :

1. Protein That Promotes Survival Of Stem Cells Might Be Key To Poor Leukemia Prognosis
2. Gene Signatures Predict Interferon Response For Multiple Sclerosis Patients
3. Chromosome Deletion Predicts Aggressive Neuroblastoma
4. Measuring Enzymes At End Of Cancer Pathway Predicts Outcome Of Tarceva, Taxol
5. Analysis Of Human Genome To Predict The Development Of Illnesses
6. Computational Tool Predicts How Drugs Work In Cells, Advancing Efforts To Design Better Medicines
7. Predicting success
8. Predicting chemotherapy outcome
9. Predicting successful outcomes in living-donor liver transplants
10. World-first Living Donor Islet Cell Transplant A Success; Procedure Offers Promise For Diabetics
11. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
Post Your Comments:

(Date:11/2/2015)... , Nov. 2, 2015  SRI International has ... to provide preclinical development services to the National Cancer ... SRI will provide scientific expertise, modern testing and support ... of preclinical pharmacology and toxicology studies to evaluate potential ... --> The PREVENT Cancer Drug Development Program is ...
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
(Date:10/29/2015)... NXTD ) ("NXT-ID" or ... the growing mobile commerce market and creator of ... leading marketplace to discover and buy innovative technology ... on StackSocial for this holiday season.   ... a biometric authentication company focused on the growing ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... LUMPUR, Malaysia , Nov. 24, 2015 /PRNewswire/ ... global contract research organisation (CRO) market. The trend ... result in lower margins but higher volume share ... increased capacity and scale, however, margins in the ... Research Organisation (CRO) Market ( ), ...
(Date:11/24/2015)... -- Cepheid (NASDAQ: CPHD ) today announced that ... and invited investors to participate via webcast. ... 1, 2015 at 11.00 a.m. Eastern Time --> ... 1, 2015 at 11.00 a.m. Eastern Time --> ... NY      Tuesday, December 1, 2015 at 11.00 ...
(Date:11/24/2015)... , Nov. 24, 2015 /CNW/ - iCo Therapeutics ("iCo" ... reported financial results for the quarter ended September ... in Canadian dollars and presented under International Financial ... States ," said Andrew Rae , ... regarding iCo-008 are not only value enriching for ...
(Date:11/24/2015)... ... 24, 2015 , ... International Society for Pharmaceutical Engineering (ISPE) ... annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place in ... largest number of attendees in more than a decade. , “The 2015 ...
Breaking Biology Technology: