Navigation Links
Circles Of DNA Might Help Predict Success Of Stem Cell Transplantation

Measuring the quantity of a certain type of immune cell DNA in the blood could help physicians predict whether a bone marrow stem cell transplant will successfully restore a population of infection-fighting cells called T lymphocytes in a child. This research, by investigators at St. Jude Children's Research Hospital, is published in the journal Blood.

This finding could help physicians predict whether children receiving such a transplant will experience either failure or significant delay in the reconstitution of the T cell population. Moreover, if the transplant is successful, T cells arising from donated stem cells will be available to launch attacks on the patient's cancer cells--the so-called "graft-versus-tumor" response. This will further improve the patient's outcome following initial therapy (chemotherapy, irradiation and surgery).

Physicians sometimes treat patients with stem cell transplants as part of therapy for a variety of diseases such as leukemia or sickle cell disease. In these cases physicians eliminate the patients' own stem cells that produce cancerous white cells or faulty red cells and replace them with healthy stem cells from donors. If the transplants succeed, the donated stem cells repopulate the blood with healthy red and white cells.

The St. Jude team showed that the more copies of tiny rings of DNA called signal-joint TRECs (sjTRECs) there are in a child's blood, the more likely it is that the patient's thymus gland can act as an efficient factory where stem cells become T cells. The thymus is an immune system organ behind the breastbone that processes immature "precursor" immune cells into specialized T cells.

T lymphocytes are specialized immune cells carrying proteins called receptors on their surface. The target that a T cell recognizes and attacks depends on the makeup of its receptor, which is constructed of protein building blocks. Each protein building block is coded by a specific gene. sjTRECs form during a "mix-and-match" rearrangement of these genes into any one of countless combinations. The rings represent sections of DNA cut out of chromosomes during the mixing and matching of genes that are chosen to build a particular receptor. Each T cell uses the resulting combination of genes to make a receptor that lets the cell recognize a specific target. When stimulated to multiply, each of those cells produce an army of immune cells against their designated target.

Specific infectious organisms or other foreign substances stimulate T cells to divide and multiply in order to form an attacking army. However, the sjTRECs don't multiply when the original T cells divide and multiply. Instead, the more T cells that are produced in the blood as the parent cells containing sjTRECs divide and produce daughter cells, the more the sjTRECs in those original T cells get "diluted" within the growing army of these immune cells. This proves that high levels of sjTREC in blood means that a large number of stem cells have been converted to parent T cells--each of which targets a specific foreign substance, according to Rupert Handgretinger, M.D., Ph.D., director of Stem Cell Transplantation at St. Jude and co-director of the Transplantation and Gene Therapy Program.

"sjTRECs appear only after the gene shuffling has successfully occurred in the parent cell," Handgretinger said. "So if we extract large numbers of sjTRECs from T cells in the blood of a patient about to undergo a stem cell transplant, that's a good sign. It means the patient's thymus is a good T-cell factory."

Handgretinger is the senior author of the Blood report.

The St. Jude team tested levels of sjTREC in the blood of 77 healthy donors who provided stem cells to their siblings. The researchers also tested 244 samples from 26 of the recipients themselves. The recipients had been treated for either white cell cancers (e.g., acute lymphoblastic leukemia) or red cell diseases (e.g., s ickle cell disease).

Because blood from the normal, healthy donors contained 1,200 to 155,000 sjTREC copies per milliliter of blood, the investigators chose 1,200 as the lowest end of the normal range for sjTRECs.

The team found that transplant recipients who had more than 1,200 copies of sjTREC in each milliliter of their blood before transplantation were more likely than patients with fewer copies to experience successful reconstitutions of their T cell populations. In patients with fewer than 1,200 copies per milliliter, the transplantation was likely either to fail or be significantly slow in reconstructing the T cell population.

"This is the first demonstration that high levels of sjTREC in a potential stem cell recipient can predict that their thymus will successfully reconstitute their T cell population using donated stem cells," said Xiaohua Chen, Ph.D., first author of the Blood article. "This kind of information should help physicians improve their ability to manage individual patients by predicting how they will respond to stem cell transplants."

Other authors of this study are Raymond Barfield, Ely Benaim, Wing Leung, James Knowles, Dawn Lawrence, Mario Otto, Sheila A. Shurtleff, Geoffrey A. M. Neale, Frederick G. Behm and Victoria Turner.

###

This work was supported in part by the Assisi Foundation of Memphis and ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit http://www.stjude.org.


'"/>

Source:St. Jude Children鈥檚 Research Hospital


Related biology news :

1. Protein That Promotes Survival Of Stem Cells Might Be Key To Poor Leukemia Prognosis
2. Gene Signatures Predict Interferon Response For Multiple Sclerosis Patients
3. Chromosome Deletion Predicts Aggressive Neuroblastoma
4. Measuring Enzymes At End Of Cancer Pathway Predicts Outcome Of Tarceva, Taxol
5. Analysis Of Human Genome To Predict The Development Of Illnesses
6. Computational Tool Predicts How Drugs Work In Cells, Advancing Efforts To Design Better Medicines
7. Predicting success
8. Predicting chemotherapy outcome
9. Predicting successful outcomes in living-donor liver transplants
10. World-first Living Donor Islet Cell Transplant A Success; Procedure Offers Promise For Diabetics
11. Successful Test Of Single Molecule Switch Opens The Door To Biomolecular Electronics
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... UAS LifeSciences, one of the leading ... UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing high ... its list of well-respected retailers. This list includes such fine stores as Whole ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... , June 23, 2016 Houston ... with the Cy-Fair Sports Association to serve as ... the agreement, Houston Methodist Willowbrook will provide sponsorship ... and connectivity with association coaches, volunteers, athletes and ... with the Cy-Fair Sports Association and to bring ...
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
Breaking Biology Technology: