Navigation Links
Cholera pathogen reveals how bacteria generate energy to live

Researchers at Rensselaer Polytechnic Institute have discovered new details about how bacteria generate energy to live. In two recently published papers, the scientists add key specifics to the molecular mechanism behind the pathogen that causes cholera. The work could provide a better understanding of this pathogen, while also offering insight into how cells transform energy from the environment into the forms required to sustain life.

As a single-cell organism, Vibrio cholerae depends on resources in its immediate environment to sustain itself. Blanca Barquera, assistant professor of biology at Rensselaer and principal investigator for the project, studies an enzyme that resides in the membrane that encapsulates V. cholerae. This enzyme, known as NQR, pumps sodium ions out of the bacteria to generate a difference in concentrations between outside and inside. This gradient acts like a battery that powers essential cell functions, such as the movement of the bacterium’s tail, the flagellum.

Most cells, including human cells, use gradients of protons for this energy conservation function, but enzymes that work with sodium ions are ideal for experimental study, according to Barquera. Sodium is easier to trace and its concentration can be changed without affecting pH, which is a complication with protons. "It’s a very good system to understand this very basic mechanism charging this battery to create energy," she said.

In order to learn how the enzyme works, researchers are trying to get an idea of its three-dimensional structure. "The enzyme is like two machines together ?imagine the turbine and generator of a hydroelectric dam. One is the source of energy; the other uses this energy to pump ions out of the cell," Barquera said. How the two machines are connected is one key question.

In the first paper, published in the Journal of Bacteriology, Barquera tackled the question of how the structure of the enzyme is organized with respe ct to the two sides of the membrane. The problem is that the enzyme is not amenable to standard methods of determining structure. Since an ion pump needs to carry ions from one side of the bacterial membrane to the other, the enzyme has to reach all the way from the water-like medium inside the cell, through the oily membrane interior, to the water-like environment outside the cell. For this reason, the enzyme is made up of water-soluble and oil-soluble components within a single entity, so it can’t hold its shape in any one solvent.

Using a stepwise process, Barquera attached labels at significant points along the length of the protein and then determined whether these labels appeared inside or outside the envelope of the cell membrane. The results showed that the cofactors ?important parts of the enzyme’s machinery ?are all located on the inner side of the membrane, which corresponds to the "intake" port of the ion pump.

The second paper was published in the Journal of Biological Chemistry. In this study, Barquera focused on structures, known as flavins, within the enzyme that carry the electric current that drives the ion pump. Using an interdisciplinary approach that combined genetic methods ?to modify the enzyme structure ?with an analytical technique known as Electron Paramagnetic Resonance Spectroscopy, which observes electron spin, she and her co-worker Mark Nilges at the University of Illinois analyzed the properties of the flavin molecules, and mapped these functional properties to specific points in the protein structure.

NQR is only one of several sodium pumping enzymes that Barquera plans to study. Because these enzymes are significantly different from human proteins that do similar work, some of them might be targeted by novel antibiotics. "An inhibitor or drug would be specific," she said. "You could kill the bacteria without doing anything to the human host."

But Barquera believes that the most important ben efits of her research could develop in ways that cannot be foreseen: "From the basic science point of view, the more you know, the better," Barquera said. "It’s basic science that will take us to unexpected places."

One of those unexpected places in Barquera’s career has been her developing interest in the physiology and life cycle of V. cholerae itself. Much of what is known about V. cholerae is from study of the organism when it is in the body, yet the bacteria spend most of their lives outside their hosts. Study of the rest of the life cycle could be important in disease prevention.

"We have to know the enemy," Barquera said. As it stands, "We are trying to kill our enemies with very little knowledge."

Source:Rensselaer Polytechnic Institute

Related biology news :

1. Researchers develop rapid diagnostic tool for pathogen identification
2. A new study examines how shared pathogens affect host populations
3. New lab technique identifies high levels of pathogens in therapy pool
4. Researchers uncover sequence of major rice pathogen
5. Edible bivalves as a source of human pathogens: signals between vibrios and the bivalve host.
6. Tagging pathogens with synthetic DNA barcodes
7. Study: Plants use dual defense system to fight pathogens
8. CO2 sensing proves critical for fungal pathogens to adapt to life in air and human hosts
9. How Rickettsial pathogens break into cells
10. Wisconsin scientists discover a master key to microbes pathogenic lifestyles
11. Ticks, flukes, and genomics: Emerging pathogens revealed

Post Your Comments:

(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces today ... its Board of Directors. --> ... recently retiring from the partnership at TPG Capital, one ... with over $140 Billion in revenue.  He founded and ... all the TPG companies, from 1997 to 2013.  In ...
(Date:11/12/2015)... LONDON , Nov. 11, 2015   ... and reliable analytical tools has been paving the ... and qualitative determination of discrete analytes in clinical, ... sensors are being predominantly used in medical applications, ... and environmental sectors due to continuous emphasis on ...
(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... ... metabolism. But unless it is bound to proteins, copper is also toxic to ... researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper ...
(Date:11/24/2015)... , November 24, 2015 ... new market research report "Oligonucleotide Synthesis Market by Product ... (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical ... published by MarketsandMarkets, the market is expected to reach ... in 2015, at a CAGR of 10.1% during the ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
(Date:11/24/2015)... ... 2015 , ... In harsh industrial processes, the safety of ... can represent a weak spot where leaking process media is a possible hazard. ... , which are designed to tolerate extreme process conditions. They combine rugged design ...
Breaking Biology Technology: