Navigation Links
Cheaper, better disease treatments expected from faster approach to developing antibodies

A method of mass-producing disease-fighting antibodies entirely within bacteria has been developed by a research group at The University of Texas at Austin.

The group led by Dr. George Georgiou developed the new antibody-production approach to improve upon processes used previously to identify new drugs. Drug companies have used those more time- and labor-intensive processes to develop antibodies for treating rheumatoid arthritis, cancer and other diseases.

The new approach developed in collaboration with Dr. Brent Iverson overcomes those obstacles, and has other advantages.

"Our approach can provide a significant time savings," said Georgiou, "and it enables antibodies to be isolated to treat human diseases that may not be possible to obtain otherwise."

The results were published online Sunday, April 15, in Nature Biotechnology.

Bacteria are easy to grow in an inexpensive broth. As a result, harmless forms of the bacterium E. coli have already been used as factories to produce antibodies (protective proteins of the human body that fight viruses, cancer cells and other harmful agents). However, previous approaches required an antibody that looked promising to be transferred from bacteria to mammalian cells to pursue large-scale, commercial production.

Getting mammalian cells to produce lots of antibodies costs more, and can take several months. The direct bacterial approach developed by the laboratory of the professor of chemical engineering, biomedical engineering, and molecular genetics and microbiology shaves weeks off the production process. Based on the method's early success, Georgiou has begun a collaboration to identify antibodies to treat arthritis and asthma.

In Georgiou's E-clonal antibody method, an antibody that is produced by an E. coli bacterium becomes tethered to one of its inner surfaces, or membranes. Small "errors" in the genes that produce antibodies are introduced. These changes result in slightly altered antibodies that may attach more strongly to a disease protein. The interaction between the antibody and the disease protein blocks the protein from doing harm in the body, effectively short-cutting a disease process.

Georgiou, who holds the Cockrell Family Regents Chair in Engineering #9, and Chemistry and Biochemistry Professor Brent Iverson, the Warren J. and Viola Mae Raymer Professor and Distinguished Teaching Professor, previously used the antibody evolution process to engineer a similar antibody that is in late-stage, clinical trials to treat human anthrax infections. Iverson is a co-author and a collaborator on the latest research.

To test the bacterium-only system, lead author Yariv Mazor, a postdoctoral student in chemical engineering, engineered antibodies to an anthrax toxin called PA. He and Thomas Van Blarcom, a graduate student in chemical engineering, used a method called APEx, co-developed by Georgiou and Iverson's lab, to identify the bacteria-bound antibodies that attach best to the PA. Van Blarcom then took those bacteria and grew large numbers of them to begin refining the steps needed for mass-scale production of promising therapeutic antibodies.


'"/>

Source:University of Texas at Austin


Related biology news :

1. Chemists create Superbowl molecule; May lead to better health
2. Protein discovery could unlock the secret to better TB treatment
3. Signaling protein builds bigger, better bones in mice
4. Harnessing microbes, one by one, to build a better nanoworld
5. Two are better than one
6. Discovery may lead to better Candidiasis drug
7. Insects, viruses could hold key for better human teamwork in disasters
8. Atmosphere may cleanse itself better than previously thought
9. Could better mangrove habitats have spared lives in the 2004 tsunami?
10. Muscle repair: Making a good system better, faster; implications for aging, disease
11. Plant genes identified that can form basis for crops better adapted to environmental conditions
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
(Date:4/11/2017)... , April 11, 2017 No ... but researchers at the New York University Tandon ... of Engineering have found that partial similarities between ... systems used in mobile phones and other electronic ... The vulnerability lies in the fact ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... HILLS, Calif. , Oct. 11, 2017  SkylineDx today ... (ICR) and University of Leeds ... risk-stratify patients with multiple myeloma (MM), in a multi-centric Phase ... University of Leeds is the sponsor ... and ICR will perform the testing services to include high-risk ...
(Date:10/11/2017)... ... 11, 2017 , ... A new study published in Fertility ... fresh in vitro fertilization (IVF) transfer cycles. The multi-center matched cohort ... After comparing the results from the fresh and frozen transfer cohorts, the authors ...
(Date:10/10/2017)... ... , ... San Diego-based team building and cooking events company, Lajollacooks4u, has unveiled ... bold new look is part of a transformation to increase awareness, appeal to new ... , It will also expand its service offering from its signature gourmet cooking classes ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second time in ... STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, ... , US2020’s mission is to change the trajectory of STEM education in America ...
Breaking Biology Technology: