Navigation Links
Cheaper, better disease treatments expected from faster approach to developing antibodies

A method of mass-producing disease-fighting antibodies entirely within bacteria has been developed by a research group at The University of Texas at Austin.

The group led by Dr. George Georgiou developed the new antibody-production approach to improve upon processes used previously to identify new drugs. Drug companies have used those more time- and labor-intensive processes to develop antibodies for treating rheumatoid arthritis, cancer and other diseases.

The new approach developed in collaboration with Dr. Brent Iverson overcomes those obstacles, and has other advantages.

"Our approach can provide a significant time savings," said Georgiou, "and it enables antibodies to be isolated to treat human diseases that may not be possible to obtain otherwise."

The results were published online Sunday, April 15, in Nature Biotechnology.

Bacteria are easy to grow in an inexpensive broth. As a result, harmless forms of the bacterium E. coli have already been used as factories to produce antibodies (protective proteins of the human body that fight viruses, cancer cells and other harmful agents). However, previous approaches required an antibody that looked promising to be transferred from bacteria to mammalian cells to pursue large-scale, commercial production.

Getting mammalian cells to produce lots of antibodies costs more, and can take several months. The direct bacterial approach developed by the laboratory of the professor of chemical engineering, biomedical engineering, and molecular genetics and microbiology shaves weeks off the production process. Based on the method's early success, Georgiou has begun a collaboration to identify antibodies to treat arthritis and asthma.

In Georgiou's E-clonal antibody method, an antibody that is produced by an E. coli bacterium becomes tethered to one of its inner surfaces, or membranes. Small "errors" in the genes that produce antibodies are introduced. These changes result in slightly altered antibodies that may attach more strongly to a disease protein. The interaction between the antibody and the disease protein blocks the protein from doing harm in the body, effectively short-cutting a disease process.

Georgiou, who holds the Cockrell Family Regents Chair in Engineering #9, and Chemistry and Biochemistry Professor Brent Iverson, the Warren J. and Viola Mae Raymer Professor and Distinguished Teaching Professor, previously used the antibody evolution process to engineer a similar antibody that is in late-stage, clinical trials to treat human anthrax infections. Iverson is a co-author and a collaborator on the latest research.

To test the bacterium-only system, lead author Yariv Mazor, a postdoctoral student in chemical engineering, engineered antibodies to an anthrax toxin called PA. He and Thomas Van Blarcom, a graduate student in chemical engineering, used a method called APEx, co-developed by Georgiou and Iverson's lab, to identify the bacteria-bound antibodies that attach best to the PA. Van Blarcom then took those bacteria and grew large numbers of them to begin refining the steps needed for mass-scale production of promising therapeutic antibodies.


'"/>

Source:University of Texas at Austin


Related biology news :

1. Chemists create Superbowl molecule; May lead to better health
2. Protein discovery could unlock the secret to better TB treatment
3. Signaling protein builds bigger, better bones in mice
4. Harnessing microbes, one by one, to build a better nanoworld
5. Two are better than one
6. Discovery may lead to better Candidiasis drug
7. Insects, viruses could hold key for better human teamwork in disasters
8. Atmosphere may cleanse itself better than previously thought
9. Could better mangrove habitats have spared lives in the 2004 tsunami?
10. Muscle repair: Making a good system better, faster; implications for aging, disease
11. Plant genes identified that can form basis for crops better adapted to environmental conditions
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
(Date:3/22/2016)... March 22, 2016 ... Sensors Market for Consumer Industry by Type (Image, ... Application (Communication & IT, Entertainment, Home Appliances, ... Forecast to 2022", published by MarketsandMarkets, the ... to reach USD 26.76 Billion by 2022, ...
(Date:3/18/2016)... , March 18, 2016 --> ... of Biometrics, ICT, Manned & Unmanned Vehicles, Physical infrastructure and ... security companies in the border security market and the continuing ... and Europe has led visiongain to ... improved success. --> defence & security companies ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... Wausau, WI (PRWEB) , ... June 23, 2016 ... ... probiotic supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, ... supplements for over 35 years, is proud to add Target to its list ...
(Date:6/23/2016)... 2016 Houston Methodist Willowbrook Hospital has ... Association to serve as their official health care ... Willowbrook will provide sponsorship support, athletic training services, ... coaches, volunteers, athletes and families. "We ... Association and to bring Houston Methodist quality services ...
(Date:6/23/2016)... FRANCISCO , June 23, 2016   EpiBiome ... has secured $1 million in debt financing from Silicon ... ramp up automation and to advance its drug development ... its new facility. "SVB has been an ... beyond the services a traditional bank would provide," said ...
Breaking Biology Technology: