Navigation Links
Cells use 'noise' to make cell-fate decisions

Electrical noise, like the crackle heard on AM radio when lightning strikes nearby, is a nuisance that wreaks havoc on electronic devices. But within cells, a similar kind of biochemical "noise" is beneficial, helping cells transform from one state to another, according to a new study led by a UT Southwestern Medical Center researcher.

Dr. Gürol Süel, assistant professor of pharmacology, said his research and that of his colleagues published today in the journal Science represents "a new paradigm," suggesting that rather than being bad for biology, cellular noise might have an important function, such as prompting stem cells to transform into a specific tissue type.

Electronic noise is an unwanted signal characteristic of all electrical circuits, typically caused by random fluctuations in the electric current passing through the components of a circuit. Similarly, within each living cell there are myriad "genetic circuits," each composed of a distinct set of biochemical reactions that contribute to some biological process. Randomness in those reactions contributes to biological noise, technically referred to as stochastic fluctuations.

"Noise in biological systems is a fact of life," said Dr. Süel, a member of the systems biology division of the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology at UT Southwestern. "Even though each cell may have the same set of genes turned on ?the same hard-wired genetic circuit ?there will still be slight variations in the amount of the various proteins those genes produce, some fluctuation in the amount of each circuit component. No two cells are alike in terms of their chemical composition."

Conventional scientific thinking has been that the random nature of such fluctuations within cells interferes with the reliable operation of biological systems. However, Dr. Süel's research team hypothesized that noise in one particular genetic circuit might be beneficial, linked to a process that controls cell fate.

To determine the biological role for noise, the researchers analyzed a genetic circuit that controls the transformation of bacteria cells from one state to another. This process, called differentiation, is akin to that used by human stem cells to change into a specific tissue type.

In a series of theoretical calculations and actual experiments, the researchers found that the particular circuit they investigated appears to have evolved in this bacterium to amplify cellular noise. Dr. Süel and his colleagues determined that by dampening the noise level within the bacterial cells, they could prevent the cells' transformation between states, essentially "tuning" cellular behavior.

"The amplitude of cellular noise correlates with the probability of triggering differentiation," Dr. Süel said. "This is experimental evidence that a genetic circuit utilizes noise to drive a biological process."

Typically, scientists examine genes and proteins individually to try to determine their functions within a cell. However, Dr. Süel said that's like examining each capacitor or switch in an electrical circuit in an attempt to understand the function of the electrical device in which the circuit is housed.

"Our research provides a systems-level view of how gene circuits work as a whole," he said.

Dr. Süel said the next step in his research would be to uncover the theoretical design principles of genetic circuits and what role interactions between distinct circuits play in regulating complex biological processes, such the differentiation of multipotent stem cells.

Dr. Süel, who earned his doctorate in molecular biophysics from UT Southwestern, carried out much of the work for the Science paper while a postdoctoral research fellow at the California Institute of Technology. He joined the UT Southwestern faculty in November and is an Endowed Schol ar in Biomedical Research.

Other co-authors on the Science paper are Rajan Kulkarni and senior author Michael Elowitz, both of Caltech; Jonathan Dworkin of Columbia University; and Jordi Garcia-Ojalvo of the Universitat Politecnica de Catalunya in Spain.

The work was funded in part by the National Institutes of Health, the Searle Scholars Program and the Human Frontier Science Program.
'"/>

Source:UT Southwestern Medical Center


Related biology news :

1. Jump-starting T Cells In Skin Cancer
2. Emory Study Tests Bone Marrow Stem Cells to Improve Circulation in Legs
3. Transplantation Of Monkey Embryonic Stem Cells Reverses Parkinson Disease In Primates
4. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
5. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
6. First-ever Compounds To Target Only Metastatic Cells Are Highly Effective Against Breast, Prostate, And Colon Cancers
7. Placenta Is A Rich Source Of Blood Stem Cells
8. UCSD Discovery Shows How Embryonic Stem Cells Perform Quality Control Inspections
9. Estrogen-like Component of Plastic Stimulates Growth of Certain Prostate Cancer Cells
10. Protein That Promotes Survival Of Stem Cells Might Be Key To Poor Leukemia Prognosis
11. Infants With Rare Genetic Disease Saved by Cord Blood Stem Cells

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/15/2016)... , Nov 15, 2016 Research and ... Global Forecast to 2021" report to their offering. ... ... USD 16.18 Billion by 2021 from USD 6.21 Billion in 2016, ... Growth of the bioinformatics market is driven by the ...
(Date:6/22/2016)... 22, 2016  The American College of Medical Genetics and ... Magazine as one of the fastest-growing trade shows during ... the Bellagio in Las Vegas . ... of growth in each of the following categories: net square ... number of attendees. The 2015 ACMG Annual Meeting was ranked ...
(Date:6/20/2016)... 2016 Securus Technologies, a leading provider ... public safety, investigation, corrections and monitoring announced that ... has secured the final acceptance by all three ... Access Systems (MAS) installed. Furthermore, Securus will have ... installed by October, 2016. MAS distinguishes between legitimate ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... From wearable devices that can ... sports. On Thursday, December 15th a panel of entrepreneurs, innovators and a Philadelphia ... at a Smart Talk session. Smart Talk will run from 8:30 – 10:30 ...
(Date:12/8/2016)... , ... December 08, 2016 , ... ... to control cells — optogenetics — is key to exciting advances in the ... art, spatially patterned light projected via free-space optics stimulates small, transparent organisms and ...
(Date:12/8/2016)... ... December 08, 2016 , ... KBioBox llc announced today ... demand KbioBox developed a sophisticated “3 click” gene dditing off target analysis program ... new website, https://www.kbiobox.com/ and powered by the company’s proprietary BioEngine. ...
(Date:12/8/2016)... 8, 2016 Soligenix, Inc. (OTCQB: SNGX) (Soligenix ... developing and commercializing products to treat rare diseases where ... it will be hosting an Investor Webcast Event Friday, ... origins of innate defense regulators (IDRs) as a new ... mucositis and the recently announced and published Phase 2 ...
Breaking Biology Technology: