Navigation Links
Cells use 'noise' to make cell-fate decisions

Electrical noise, like the crackle heard on AM radio when lightning strikes nearby, is a nuisance that wreaks havoc on electronic devices. But within cells, a similar kind of biochemical "noise" is beneficial, helping cells transform from one state to another, according to a new study led by a UT Southwestern Medical Center researcher.

Dr. Gürol Süel, assistant professor of pharmacology, said his research and that of his colleagues published today in the journal Science represents "a new paradigm," suggesting that rather than being bad for biology, cellular noise might have an important function, such as prompting stem cells to transform into a specific tissue type.

Electronic noise is an unwanted signal characteristic of all electrical circuits, typically caused by random fluctuations in the electric current passing through the components of a circuit. Similarly, within each living cell there are myriad "genetic circuits," each composed of a distinct set of biochemical reactions that contribute to some biological process. Randomness in those reactions contributes to biological noise, technically referred to as stochastic fluctuations.

"Noise in biological systems is a fact of life," said Dr. Süel, a member of the systems biology division of the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology at UT Southwestern. "Even though each cell may have the same set of genes turned on ?the same hard-wired genetic circuit ?there will still be slight variations in the amount of the various proteins those genes produce, some fluctuation in the amount of each circuit component. No two cells are alike in terms of their chemical composition."

Conventional scientific thinking has been that the random nature of such fluctuations within cells interferes with the reliable operation of biological systems. However, Dr. Süel's research team hypothesized that noise in one particular genetic circuit might be beneficial, linked to a process that controls cell fate.

To determine the biological role for noise, the researchers analyzed a genetic circuit that controls the transformation of bacteria cells from one state to another. This process, called differentiation, is akin to that used by human stem cells to change into a specific tissue type.

In a series of theoretical calculations and actual experiments, the researchers found that the particular circuit they investigated appears to have evolved in this bacterium to amplify cellular noise. Dr. Süel and his colleagues determined that by dampening the noise level within the bacterial cells, they could prevent the cells' transformation between states, essentially "tuning" cellular behavior.

"The amplitude of cellular noise correlates with the probability of triggering differentiation," Dr. Süel said. "This is experimental evidence that a genetic circuit utilizes noise to drive a biological process."

Typically, scientists examine genes and proteins individually to try to determine their functions within a cell. However, Dr. Süel said that's like examining each capacitor or switch in an electrical circuit in an attempt to understand the function of the electrical device in which the circuit is housed.

"Our research provides a systems-level view of how gene circuits work as a whole," he said.

Dr. Süel said the next step in his research would be to uncover the theoretical design principles of genetic circuits and what role interactions between distinct circuits play in regulating complex biological processes, such the differentiation of multipotent stem cells.

Dr. Süel, who earned his doctorate in molecular biophysics from UT Southwestern, carried out much of the work for the Science paper while a postdoctoral research fellow at the California Institute of Technology. He joined the UT Southwestern faculty in November and is an Endowed Schol ar in Biomedical Research.

Other co-authors on the Science paper are Rajan Kulkarni and senior author Michael Elowitz, both of Caltech; Jonathan Dworkin of Columbia University; and Jordi Garcia-Ojalvo of the Universitat Politecnica de Catalunya in Spain.

The work was funded in part by the National Institutes of Health, the Searle Scholars Program and the Human Frontier Science Program.
'"/>

Source:UT Southwestern Medical Center


Related biology news :

1. Jump-starting T Cells In Skin Cancer
2. Emory Study Tests Bone Marrow Stem Cells to Improve Circulation in Legs
3. Transplantation Of Monkey Embryonic Stem Cells Reverses Parkinson Disease In Primates
4. Fundamental Finding Yields Insight into Stem Cells, Cancer; Opens Door to Drug Discovery
5. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
6. First-ever Compounds To Target Only Metastatic Cells Are Highly Effective Against Breast, Prostate, And Colon Cancers
7. Placenta Is A Rich Source Of Blood Stem Cells
8. UCSD Discovery Shows How Embryonic Stem Cells Perform Quality Control Inspections
9. Estrogen-like Component of Plastic Stimulates Growth of Certain Prostate Cancer Cells
10. Protein That Promotes Survival Of Stem Cells Might Be Key To Poor Leukemia Prognosis
11. Infants With Rare Genetic Disease Saved by Cord Blood Stem Cells

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/8/2017)... Report Highlights ... The global synthetic-biology market reached nearly $3.9 billion in ... a compound annual growth rate (CAGR) of 24.0% through 2021. ... for synthetic biology. - Analyses of global market trends, with ... annual growth rates (CAGRs) through 2021. - Coverage of core ...
(Date:2/7/2017)... New York , February 7, 2017 ... as ID Global Solutions Corporation [OTC: IDGS], ("Ipsidy" or ... management and electronic transaction processing services, is pleased to ... of the Company. Effective January 31, 2017, ... the Board of Directors, CEO and President.  An experienced ...
(Date:2/2/2017)... Feb. 2, 2017  EyeLock LLC, a market leader ... white paper " What You Should Know About Biometrics ... ensuring user authenticity is a growing concern. In traditional ... users. However, traditional authentication schemes such as username/password suffer ... Biometric authentication offers an elegant solution to the problem ...
Breaking Biology News(10 mins):
(Date:2/18/2017)... 18, 2017 Kurzlehrgang mit ... adoptiven Zelltherapie-Studien, Poster legt metaproteomische Analyse des Darm-Mikrobioms bei ... ... wird Dr. Yoav Peretz , Scientific Director bei ... von Assays zum Nachweis intrazellulärer Zytokine bei adoptiven Zelltherapie-Studien ...
(Date:2/17/2017)... 17, 2017  BioGenex, a global leader in ... a novel system for quantitative immunohistochemistry (IHC). The ... of Rochester (NY, USA) and Konica-Minolta Inc. ( ... is able to accurately quantify the expression of ... growth factor receptor-2) in clinical samples. Quantitative IHC ...
(Date:2/16/2017)... ... February 16, 2017 , ... Avomeen & MichBio will be hosting ... be held at Avomeen Analytical Services (4840 Venture Dr., Ann Arbor, Michigan 48108). ... provide an opportunity to interact with peers, make new connections and talk bio biz. ...
(Date:2/16/2017)... Research and Markets has announced the addition ... to their offering. ... The study scope includes ... chassis organisms, synthetic cells, production systems), enabling technologies (DNA ... specialty media) and enabled technologies (biofuels, chemicals, pharmaceuticals, agriculture) ...
Breaking Biology Technology: