Navigation Links
Cell death following blood 'reflow' injury tracked to natural toxin

Researchers at Johns Hopkins have discovered what they believe is the "smoking gun" responsible for most tissue and organ damage after a period of blood oxygen loss followed by a sudden restoration of blood oxygen flow.

Working with mice, the Hopkins team found that the sudden oxygen bath triggered by restored blood flow causes cells to make a chemical so toxic it kills the cells. The work was published in two papers in the Proceedings of the National Academy of Sciences last week.

Although not sure why it happens, the Hopkins scientists believe the toxic chemical, PAR-polymer, acts like a molecular sledgehammer, or a death switch. "We've found evidence of it in cells following all types of injury," says Ted Dawson, M.D., Ph.D., the Leonard and Madlyn Abramson Professor of Neurodegenerative Diseases, professor of neurology and co-director of Hopkins' Neuroregeneration and Repair Program in the Institute of Cell Engineering (ICE).

The research team has named the cell death process caused by PAR-polymer "parthanatos," after Thanatos, the personification of death from Greek mythology.

To establish that PAR-polymer is indeed the culprit in the kind of reperfusion injuries long linked to heart attacks, strokes and a variety of blood vessel injuries, the researchers pumped mouse nerve cells full of PAR-polymer. The cells died, but to be sure PAR-polymer (and not something else) killed them, they examined the brains of mice engineered to lack an enzyme that chews up and gets rid of PAR. These mouse brains contained twice as much PAR-polymer as those of normal mice.

After the researchers induced a blood clot injury like a stroke, the same mice showed a 62 percent increase in the area of brain damage compared to normal littermates. Mice that contain more of the PAR-chewing enzyme suffered less brain damage than their normal littermates.

To figure out what triggers the death switch, the researchers tracked PAR-polymer's journey after cells made it. After 15 minutes, PAR-polymer hadn't gone anywhere. But after 30 to 60 minutes, the researchers discovered that much of it traveled right to areas where the switch normally resides.

The fate of the cell is irreversible once PAR-polymer sets off the trigger, says Valina Dawson, Ph.D., professor of neurology, co-director of the Neuroregeneration and Repair Program and author of the papers. "If we could figure out how to block PAR-polymer, we could design drugs that protect the switch and prevent cells from dying after heart attacks, stroke or other injuries," she says.


'"/>

Source:Johns Hopkins Medical Institutions


Related biology news :

1. Combination therapy boosts effectiveness of telomere-directed cancer cell death
2. Enzyme allows B cells to resist death, leading to leukemia
3. Critical role in programmed cell death identified
4. A comprehensive response to HIV could prevent 10 million AIDS deaths in Africa by 2020
5. The death of a very special chimpanzee
6. The very unexpected life and death of a leukemic cell
7. Solutions that reduce death of marine life reeled in by International Smart Gear Competition
8. Emergence of cancer as major cause of childhood death in developing countries is not being adequately addressed
9. Hanging baskets of sex and death help fruit growers
10. UT Southwestern researchers discover master switch in cell death
11. Prescription pain patch abuse blamed for increase in deaths
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/1/2016)... -- Favorable Government Initiatives Coupled With Implementation ... to Boost Global Biometrics System Market Through 2021  ... " Global Biometrics Market By Type, By End ... - 2021", the global biometrics market is projected to ... growing security concerns across various end use sectors such ...
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)...   EpiBiome , a precision microbiome engineering company, ... financing from Silicon Valley Bank (SVB). The financing will ... its drug development efforts, as well as purchase additional ... has been an incredible strategic partner to us – ... would provide," said Dr. Aeron Tynes Hammack , ...
Breaking Biology Technology: