Navigation Links
Carnegie Mellon scientists find key HIV protein makes cell membranes bend more easily

PITTSBURGH -- Carnegie Mellon University scientists have made an important discovery that aids the understanding of why HIV enters immune cells with ease. The researchers found that after HIV docks onto a host cell, it dramatically lowers the energy required for a cell membrane to bend, making it easier for the virus to infect immune cells. The finding, in press in Biophysical Journal, will provide vital data to conduct future computer simulations of HIV dynamics to help further drug discovery and prevent deadly infections.

“We found that HIV fusion peptide dramatically decreases the amount of energy needed to bend a cell-like membrane,” said Stephanie Tristram-Nagle, associate research professor of biological physics at Carnegie Mellon. “This helps membranes to curve, a necessary step for HIV to fuse with an immune cell as it infects it.”

The Carnegie Mellon scientists used X-rays to study how HIV fusion peptide (part of a larger protein) affected the energy of manufactured lipid bilayers made to mimic normal cell membranes. Lipid bilayers provide a protective barrier for the cell against intruders, yet also contain molecules to recognize and communicate with other cells or get nutrients. Cells also communicate with one another via small, membrane-bound vesicles that contain proteins or other molecular cargo. When delivering their goods, vesicles from one cell fuse with the outermost membrane of another cell to form a series of hybrid structures called fusion intermediates.

Through evolution, viruses have also become skilled at fusing with cells to unload their genetic contents, which turn host cells into virus-producing factories. In the case of HIV, a molecule called gp120 initially helps the virus lock onto its host T cell, a cell critical for maintaining immunity. Another protein — gp41 — then enables HIV to penetrate a T-cell membrane. Fusion takes place specifically through a short stretch of gp41 called fusion peptide 23, or FP-23 for short . Prior studies have shown that FP-23 fuses with, and can even break apart, blood cells and other man-made, cell-like structures called liposomes.

FP-23 likely plays several roles in viral fusion, according to the researchers. One role already suspected is that FP-23 attaches to its T cell victim to facilitate a change in the shape of gp41, which in turn drives uptake of HIV RNA and proteins by the T cell. But the Carnegie Mellon work suggests that FP-23 plays another, equally important function — reducing the free energy of curved fusion intermediates. These fleeting shapes arise and disappear as HIV enters a T cell.

Normally, a cell membrane resists bending. Scientists can quantify the energy needed to overcome this resistance. The Carnegie Mellon team found that FP-23 reduces the energy required to penetrate an artificial cell membrane by up to 13 fold, depending on the thickness of that membrane.

“Reducing this energy should help explain in part how HIV infection occurs so readily,” said Tristram-Nagle. “Our findings definitely will change how theoreticians think about virus-cell interactions. This same phenomenon could provide a general way that viruses use to infect cells, so it will be exciting to look at other viral systems with our experimental method,” she said.

Many different viruses could enter cells by efficiently lowering the energy required to penetrate a cell’s outer membrane, according to Tristram-Nagle and her collaborator, John Nagle, professor of physics and biological sciences at Carnegie Mellon.

The Carnegie Mellon scientists used X-rays to detect the effect of FP-23 on lipid bilayers that mimic cell membranes. Lipid bilayers form different phases that change with temperature, but the “fluid” phase is the most biologically relevant. Using X-ray diffuse scattering, the team quantified structural properties of different lipid bilayers seeded with FP-23 peptides. The lipid bilayers varied in their thicknesses, which affect s the stiffness of cell membranes.

The research was conducted at Cornell University’s CHESS synchrotron, which provides a high-intensity source of X-rays for various studies. In their next trip to this facility, the team plans to study FP-23 together with cholesterol, a molecule known to modulate the stiffness of cell membranes.


'"/>

Source:Carnegie Mellon University


Related biology news :

1. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
2. Robot-based system developed at Carnegie Mellon detects life in Chiles Atacama desert
3. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
4. Carnegie Mellon University research reveals how cells process large genes
5. Carnegie Mellon cyLab researchers work to develop new red tide monitoring
6. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
7. Carnegie Mellon scientists create PNA molecule with potential to build nanodevices
8. Carnegie Mellon U. transforms DNA microarrays with standard Internet communications tool
9. Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level
10. Carnegie Mellon scientists show brain uses optimal code for sound
11. DNA conclusive yet still controversial, Carnegie Mellon professor says
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed ... received the prestigious international IAIR Award for the most innovative high security ... ... Maldives Immigration Controller General, ... picture on the right) have received the IAIR award for the "Most ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... SomaGenics announced the receipt of a Phase ... (Single Cell), expected to be the first commercially available ... from single cells using NGS methods. The NIH,s recent ... development of approaches to analyze the heterogeneity of cell ... for measuring levels of mRNAs in individual cells have ...
(Date:10/9/2017)... ... ... The award-winning American Farmer television series will feature 3 Bar Biologics in ... 8:30aET on RFD-TV. , With global population estimates nearing ten billion people by ... feed a growing nation. At the same time, many of our valuable resources are ...
(Date:10/7/2017)... Phoenix, Arizona (PRWEB) , ... ... ... than 15 years’ experience providing advanced instruments and applications consulting for microscopy ... the in-house expertise in application consulting, Nanoscience Analytical offers a broad range ...
Breaking Biology Technology: