Navigation Links
Carnegie Mellon scientists create PNA molecule with potential to build nanodevices

No matter how healthy a life one leads, no person has managed to live much longer than a century. Even though the advances of the modern age may have extended the average human life span, it is clear there are genetic limits to longevity. One prominent theory of aging lays the blame on the accumulation of damage done to DNA and proteins by “free radicals,?highly reactive molecules produced by the metabolic activity of mitochondria.

This damage is expected to reduce gene expression by damaging the DNA in which genes are encoded, and so the theory predicts that the most metabolically active tissues should show the greatest age-related reduction in gene expression. In this issue, Michael Eisen and colleagues show that the human brain follows this pattern. A similar pattern—which, surprisingly, involves different genes—is found in the brain of the aging chimpanzee.

The authors compared results from three separate studies of age-related gene expression, each done on the same type of DNA microarray and each comparing brain regions in young versus old adult humans. In four different regions of the cortex (the brain region responsible for higher functions such as thinking), they found a similar pattern of age-related change, characterized by changes in expression of hundreds of genes. In contrast, expression in one non-cortical region, the cerebellum (whose principal functions include movement), was largely unchanged with age. In addition to confirming a prediction of the free-radical theory of aging (namely, that the more metabolically active cortex should have a greater reduction in gene activity), this is the first demonstration that age-related gene expression patterns can differ in different cells of a single organism.

The authors found a similar difference in age-related patterns in the brain of the chimpanzee, with many genes down-regulated in the cortex that remained unchanged in the cerebellum. However, the set of affected cortical genes was entirely different between humans and chimps, whose lineages diverged about 5 million years ago. The explanation for this difference is unknown, but the finding highlights the fact that significant changes in gene expression patterns, and thus changes in many effects of the aging process, can accumulate over relatively short stretches of evolutionary time.

These results raise a number of questions about age-related gene expression changes, including whether metabolically active non-brain tissues display similar patterns of changes, and whether the divergence between human and chimp patterns was the direct result of selection, or was an inevitable consequence of some other difference in brain evolution. The patterns seen in this study also provide a starting point for understanding the network of genetic changes in aging, and may even reveal targets for treatment of neurodegenerative diseases.



Related biology news :

1. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
2. Robot-based system developed at Carnegie Mellon detects life in Chiles Atacama desert
3. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
4. Carnegie Mellon University research reveals how cells process large genes
5. Carnegie Mellon cyLab researchers work to develop new red tide monitoring
6. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
7. Carnegie Mellon U. transforms DNA microarrays with standard Internet communications tool
8. Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level
9. Carnegie Mellon scientists show brain uses optimal code for sound
10. DNA conclusive yet still controversial, Carnegie Mellon professor says
11. Teens unaware of sexually transmitted diseases until they catch one, Carnegie Mellon study finds
Post Your Comments:

(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
(Date:11/10/2015)... , Nov. 10, 2015  In ... on the basis of product, type, application, ... included in this report are consumables, services, ... report are safety biomarkers, efficacy biomarkers, and ... this report are diagnostics development, drug discovery ...
(Date:11/2/2015)... 2015  SRI International has been awarded a contract ... services to the National Cancer Institute (NCI) PREVENT Cancer ... expertise, modern testing and support facilities, and analytical instrumentation ... toxicology studies to evaluate potential cancer prevention drugs. ... Cancer Drug Development Program is an NCI-supported pipeline to ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... November 26, 2015 ... Market 2016 - 2020 report analyzes that automating ... and quality in long-term samples, minimizing manual errors, ... Automation minimizes manual errors such as mislabeling or ... Further, it plays a vital role in blood ...
(Date:11/25/2015)... 2 nouvelles études permettent d ... différences entre les souches bactériennes retrouvées dans la plaque ... humains . Ces recherches  ouvrent une nouvelle ... charge efficace de l,un des problèmes de santé ... .    --> 2 nouvelles études permettent d ...
(Date:11/25/2015)... ANGELES and HOLLISTON, Mass. ... Technology, Inc. (Nasdaq: HART ), a biotechnology company ... that CEO Jim McGorry will present at ... December 1, 2015 at 2:30 p.m. PT. The presentation ... below) for 30 days. Management will also be available ...
(Date:11/25/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; TSX: ... prospects remain fundamentally strong and highlights the following ... received DSMB recommendation to continue the ZoptEC Phase ... the final interim efficacy and safety data ... men with heavily pretreated castration- and Taxane-resistant prostate ...
Breaking Biology Technology: