Navigation Links
Carnegie Mellon researchers discover new cell properties

Carnegie Mellon University researchers Kris Noel Dahl and Mohammad F. Islam have made a new breakthrough for children suffering from an extremely rare disease that accelerates the aging process by about seven times the normal rate.

Dahl, an assistant professor of chemical and biomedical engineering at Carnegie Mellon, said her work with researchers at the National Cancer Institute of the National Institutes of Health (NIH), the John Hopkins University School of Medicine and the University of Pennsylvania reveals that children suffering from Hutchinson-Gilford Progeria Syndrome (HGPS) have an excessively stiff shell of proteins.

The nucleus in all three trillion cells of the human body contains the DNA genome, which is wrapped with a stiff protein shell called the nuclear lamina. Children with HGPS have a mutation in one of the proteins of the lamina shell. For years, experts have thought this mutation made their nuclei much softer and more likely to be ruptured when cells were under stress.

But in a Proceedings of the National Academy of Sciences (PNAS) Journal article to be published this month, Dahl and her colleagues show that the lamina shell in HGPS patients is stiffer than normal. However, stiffer isn't necessarily better. The stiffer lamina did protect the HGPS nucleus from some forces, but under excessive force the HGPS lamina was more brittle and eventually fractured.

"The mutant HGPS lamina is like an egg shell that cracks when excessive pressure or force is exerted against it," Dahl said. "By contrast, normal lamina resembles the rubbery outer shell of a racquetball, which does not break under stress or force but can assume its original shape even after hard play."

The researchers also think that the stiffer lamina in HGPS patients may be unable to communicate the proper biological signals to the DNA inside the nucleus to help the cell grow, which contributes to the disease.

Islam, an assistant professor of chemical engineering and materials science and engineering, says that the increased stiffness of the lamina may be caused by mutant proteins self-organizing into ordered structures within the HGPS lamina.

"This could make the lamina stiffer and cause fractures in the nuclei," Islam said. The healthy lamina remains disordered and therefore less rigid.

"Once we understand what causes the lamina to stiffen, we can try to reverse or stop the problem," Dahl said. "We think this stiffening mechanism happens over time with increased protein concentration, so we need to determine the tipping point that causes real problems."

When people grow old, the walls of the cell nuclei exhibit similar problems to the HGPS nuclei, like losing their round shape and perkiness. "Our NIH collaborators have also found that the normal aged nuclei show the same structural changes as HGPS," Dahl said.


'"/>

Source:Carnegie Mellon University


Related biology news :

1. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
2. Robot-based system developed at Carnegie Mellon detects life in Chiles Atacama desert
3. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
4. Carnegie Mellon University research reveals how cells process large genes
5. Carnegie Mellon cyLab researchers work to develop new red tide monitoring
6. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
7. Carnegie Mellon scientists create PNA molecule with potential to build nanodevices
8. Carnegie Mellon U. transforms DNA microarrays with standard Internet communications tool
9. Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level
10. Carnegie Mellon scientists show brain uses optimal code for sound
11. DNA conclusive yet still controversial, Carnegie Mellon professor says
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... Houston Methodist Willowbrook Hospital has signed ... to serve as their official health care provider. ... will provide sponsorship support, athletic training services, and ... volunteers, athletes and families. "We are ... and to bring Houston Methodist quality services and ...
(Date:6/23/2016)... 23, 2016  The Biodesign Challenge (BDC), a university ... to harness living systems and biotechnology, announced its winning ... New York City . ... showcased projects at MoMA,s Celeste Bartos Theater during the ... MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... STACS DNA ... Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a ... STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further ...
Breaking Biology Technology: