Navigation Links
Carnegie Mellon U. transforms DNA microarrays with standard Internet communications tool

A standard Internet protocol that checks errors made during email transmissions has now inspired a revolutionary method to transform DNA microarray analysis, a common technology used to understand gene activation. The new method, which blends experiment and computation, strengthens DNA microarray analysis, according to its Carnegie Mellon University inventor, who is publishing his findings in the December issue of Nature Biotechnology with collaborators at the Hebrew University in Israel.

The innovative method combines a new experimental procedure and a new algorithm to identify gene activation captured by DNA microarray analysis with greater sensitivity and specificity. The work holds great promise for vastly improving research on health and disease, according to Ziv Bar-Joseph, assistant professor of computer science and biological sciences at Carnegie Mellon.

"We are very excited about introducing this versatile, powerful method to the research community because it can be used to study a wide range of complex, dynamic systems more comprehensively," said Bar-Joseph, who also is a member of the Center for Automated Learning and Discovery at the School of Computer Science. "Such systems under study include stress and drug response, cancer and embryo development."

DNA microarray analysis -- a multimillion-dollar-a-year industry -- identifies gene activation in living, complex biological systems. DNA microarrays monitor the behavior of thousands of genes over time by detecting changes in the expression of as many as 30,000 different genes on one small chip. The technique has been used to study some of the most important biological systems, including how cells normally divide (the cell cycle) and immune responses to disease and infection.

"Ultimately, we think that the addition of this method to standard DNA microarray analysis will make it more accurate and cost-effective," Bar-Joseph added.

"While DNA microarrays are very powerf ul, they present a sampling problem," Bar-Joseph said. "DNA microarrays only take static snapshots of gene activity over time. In between these snapshots, genes could be activated and we just don't see them turning on. Our protocol will offer greater overall sensitivity in detecting the expression of any gene, even if a gene turns on when no microarray sampling takes place."

Bar-Joseph's procedure is based on a "check-sum" protocol initially developed to ensure that email messages sent via the Internet don't become garbled in transmission. In the standard Internet check-sum protocol, bits of information that begin as one value (0 or 1) may inadvertently flip to the opposite value as they move from one computer to the next in the form of an email. This data loss, ascribed to noise in the communication channel, is checked by counting the number of 1's in the message. If this number is odd, then the last bit is set to 1; otherwise it is set to 0. By comparing the number of 1's on the sending end with the value of the last bit on the receiving end, the recipient's computer can determine whether the message was accurately received. If not, the recipient's computer asks the sender's computer to forward the message again.

Bar-Joseph's method carries out a similar analysis of the microarray snapshots by "checking" the sum of a set of DNA microarray data points over time (a time series experiment) against the "summary" of the temporal response. If the two sets of results are equal, then what is captured by the DNA microarray time series is real. If the time series results produce a lower value than the microarray summary, the protocol indicates that the researchers have missed a gene's activation somewhere in their time series.

Just as important, according to Bar-Joseph, is whether a DNA microarray summary value exceeds its time sequence value. If that's the case, then researchers have likely identified gene activity that should be attributed to chang es taking place during an experiment -- adding a chemical or changing the temperature, for instance. This aspect of the method provides scientists with the specificity they need to weed out such introduced gene activation from fundamental gene activation pathways that form the hallmark of processes like cancer or immunity. To prove the effectiveness of this new method, Bar-Joseph studied the human cell division cycle. Considered one of the most important biological systems, the cell cycle plays a major role in cancer. Using their new method, Bar-Joseph and his colleagues identified many new human genes that were not previously found to be participants in this system.

"This new set of gene discoveries opens the way to new and more accurate models of the cell cycle system, which in turn can lead to new targets for cancer drugs," said Bar-Joseph.

The new method also overcomes synchronization loss, a vexing problem for scientists who study hundreds or thousands of cells over time, according to Bar-Joseph. Large groups of living cells that start out together at the same biological point in time eventually become asynchronized in their activities, he noted.

"You can compare a group of cells starting out in an experiment like a group of marathoners at the starting line. Over time, some marathoners will be far ahead on the track, while others will fall back." After the race begins, finding one marathoner among the thousands is difficult. Similarly, with asynchronous cells, trying to sort out a single cell response is virtually impossible. But Bar-Joseph has incorporated mathematical tools in his method that can detect genes affected by such asynchrony in a population of cells.


'"/>

Source:Carnegie Mellon University


Related biology news :

1. Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals
2. Robot-based system developed at Carnegie Mellon detects life in Chiles Atacama desert
3. Green catalyst destroys pesticides and munitions toxins, finds Carnegie Mellon University
4. Carnegie Mellon University research reveals how cells process large genes
5. Carnegie Mellon cyLab researchers work to develop new red tide monitoring
6. Team led by Carnegie Mellon University scientist finds first evidence of a living memory trace
7. Carnegie Mellon scientists create PNA molecule with potential to build nanodevices
8. Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level
9. Carnegie Mellon scientists show brain uses optimal code for sound
10. DNA conclusive yet still controversial, Carnegie Mellon professor says
11. Teens unaware of sexually transmitted diseases until they catch one, Carnegie Mellon study finds
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/17/2016)... -- ABI Research, the leader in transformative technology ... will reach more than $30 billion by 2021, ... electronics, particularly smartphones, continue to boost the biometrics ... two billion shipments by 2021 at a 40% ... Analyst at ABI Research. "Surveillance is also gearing ...
(Date:3/14/2016)... NXTD ) ("NXT-ID" or the "Company"), a company ... of a new series of commercials on Time Warner Cable ... .  The commercials will air on Bloomberg TV, Fox Business ... show. --> NXTD ) ("NXT-ID" or the "Company"), ... the airing of a new series of commercials on Time ...
(Date:3/11/2016)... PUNE, India , March 11, 2016 ... to a new market research report "Image Recognition Market ... by Application (Marketing and Advertising), by Deployment Type (On-Premises ... Global Forecast To 2022", published by MarketsandMarkets, the global ... in 2015 to USD 29.98 Billion by 2020, at ...
Breaking Biology News(10 mins):
(Date:5/24/2016)... ... 2016 , ... Media Cybernetics, global image analysis leader, announces ... reflects a results-driven revitalization for a company with a renewed focus on innovation ... crisp, refreshed logo and a new web presence. , “I believe that the ...
(Date:5/23/2016)... , May 23, 2016 Zimmer Biomet Holdings, Inc. ... today announced that its Board of Directors has approved the ... second quarter of 2016. The cash dividend ... July 29, 2016 to stockholders of record as of the ... dividends are subject to approval of the Board of Directors ...
(Date:5/23/2016)... ... May 23, 2016 , ... ... and services based in Aurora, Ohio, has broken ground on a new building ... Research Triangle Park area, this new location solidifies a commitment to business in ...
(Date:5/20/2016)... San Diego, CA (PRWEB) , ... May 20, 2016 , ... ... announce that 10 of its most experienced veterinary clients have treated over 100 of ... this cutting edge technology to provide the highest level of care for their patients. ...
Breaking Biology Technology: