Navigation Links
Bugs expose underground carbon traffic system 10 times more important than fossil fuel burning

The flow of carbon through soil is ten times greater than the amount of carbon moved around by the burning of fossil fuel but until now how this happens was at best poorly understood. Soil was almost literally a black box to scientists interested in carbon. Now researchers at the University of Warwick have been able to shed light in that black box by getting a particular class of insects to expose the key underground carbon traffic system - by eating it.

The University of Warwick team worked with researchers from Aberdeen, Lancaster and Sheffield, to try and establish if plant associated fungi - arbulscar mycorrhizal (AM) fungi - found on the roots of 80% of all land plants had any role in the movement of atmospheric carbon to soil (fixed by plants in the form of CO2). AM fungi produce filaments that spread widely throughout the soil (sometimes referred to as the mycorrhizosphere) and they are known to be important for effective uptake by plants of water and phosphates but they were not known to play any role in the movement of carbon through the soil.

The researchers developed novel soil cores that were engineered with openings covered by nylon mesh with tiny pores just big enough to allow AM mycelia to grow into them but too small for any insects or other micro-fauna (including Collembola, soil mites) to get into the cores. The cores were then filled with soil which was frozen -80oC to kill any other insects/microfauna and inserted into experimental grassland to enable colonization by AM fungi from the surrounding plants. Twenty mites from the order Collembola, which would view the AM mycelia as food stuff, were introduced to half of the cores. After another four weeks the grassland was exposed to a particular form of carbon dioxide (a stable isotope of carbon, 13C) for 7 hours, a technique called pulse labelling. Concentration of 13C in cores was then analysed. The soil cores which were exposed to the mites were found to have 32% less 13C than the control cores. This showed that Collembola's consumption of the arbulscar mycorrhizal mycelia had disrupted a key pathway transporting carbon from plants to soil.

As a final check the researchers examined both the cores with and without Collembola for a particular phospholipid fatty acid (PLFA) that is characteristic for AM mycelia. They found that this particular PLFA contained significant amounts of 13C in cores not exposed to Collembola. However those soil cores that were exposed to collembola which fed on the mycorrhizal mycelia did not have 13C enriched PFLAs..

This research establishes that arbuscular mycorrhizal mycelia provide a major highway in terms of transporting carbon from plants to soil. This new understanding of how both mycorrhizal mycelia and the insect population of soil impact on the transport of carbon will assist researchers trying to understand what preserves a healthy soil and provides recycled carbon for supporting below ground biodiversity. It will also open up a new understanding of the food-webs and nutrient flow in soil which is fundamental to sustainable agriculture.


'"/>

Source:The University of Warwick


Related biology news :

1. Penguin chicks exposed to human visitors experience spike in stress hormone
2. Embryos exposed in 3-D
3. Hair samples show babies can be exposed to crystal meth while in the womb
4. Lead-scrubbing drug may also improve muscle function in lead-exposed children
5. Deep sea algae connect ancient climate, carbon dioxide and vegetation
6. Microbe has huge role in ocean life, carbon cycle
7. Marine bacterium suspected to play role in global carbon and nitrogen cycles
8. High carbon dioxide levels spur Southern pines to grow more needles
9. Field tested: Grasslands wont help buffer climate change as carbon dioxide levels rise
10. Modifications render carbon nanotubes nontoxic
11. Climate change will affect carbon sequestration in oceans, model shows
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/14/2016)... http://www.apimages.com ) - ... - Renvoi : image disponible via AP Images ( ... --> DERMALOG, le leader de l,innovation ... d,empreintes digitales pour l,enregistrement des réfugiés en Allemagne. ... produire des cartes d,identité aux réfugiés. DERMALOG dévoilera ...
(Date:3/10/2016)...   Unisys Corporation (NYSE: UIS ) today ... is testing its biometric identity solution at the Otay Mesa ... help identify certain non-U.S. citizens leaving the country. ... help determine the efficiency and accuracy of using biometric technologies ... run until May 2016. --> the United ...
(Date:3/8/2016)... March 8, 2016   Valencell , the ... announced it has secured $11M in Series D ... a new venture fund being launched by UAE-based ... from existing investors TDF Ventures and WSJ Joshua ... continue its triple-digit growth and accelerate its pioneering ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... Diego, Calif. (PRWEB) , ... May 25, 2016 , ... ... Diego area and has consistently been rated one of its top attractions. Fortune ... the globe to participate in a unique and intimate team-building experience. , Each event ...
(Date:5/25/2016)... Phoenix, AZ (PRWEB) , ... May 25, 2016 ... ... Arizona, Dr. Michael Fitzmaurice recently became double board-certified in surgery and surgery of ... 31, 2015. Dr. Fitzmaurice is no stranger to going above and beyond in ...
(Date:5/25/2016)... ... May 25, 2016 , ... WEDI, the nation’s leading authority on ... that Charles W. Stellar has been named by the WEDI Board of Directors as ... As an executive leader with more than 35 years of experience in healthcare, association ...
(Date:5/24/2016)... ... May 24, 2016 , ... Cell therapies for a ... accelerated by research at Worcester Polytechnic Institute (WPI) that yielded a newly patented ... regeneration. , The novel method, developed by WPI faculty members Raymond Page, PhD, ...
Breaking Biology Technology: